

Data Augmentation for Conversational AI

The 32nd ACM International Conference on Information and Knowledge Management (CIKM 2023)

Tutorial website

Presenters

Heydar Soudani PhD Candidate Radboud University heydar.soudani@ru.nl

Roxana Petcu PhD Candidate University of Amsterdam r.m.petcu@uva.nl

Evangelos Kanoulas

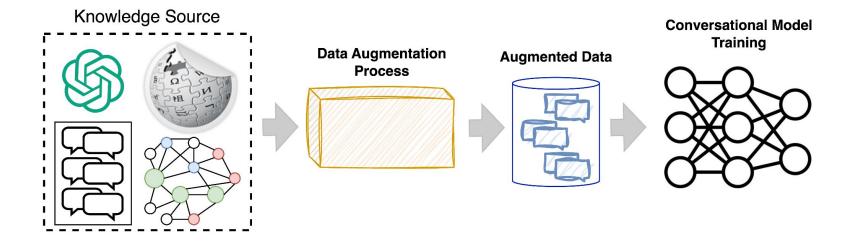
University of Amsterdam

Faegheh Hasibi

Assistant Professor Radboud University

f.hasibi@cs.ru.nl

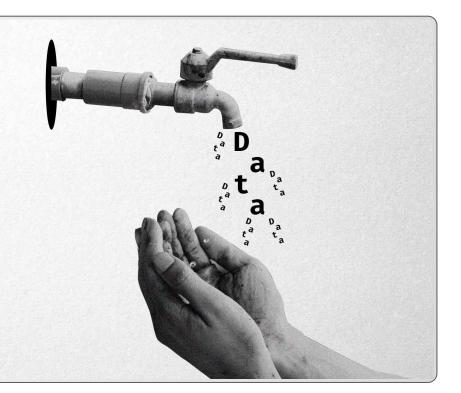
What is This Tutorial About?



The process of artificially expanding the size and/or the diversity of training data for conversational AI models.

Why data augmentation for conversational AI?

Because of the Data Scarcity issue



Data Scarcity in Conversational AI

- Large neural models are heavily used for dialogue systems
- Access to large amount of training data is key to the success of these models
- **Crowdsourcing** is a common approach to create large scale datasets

Crowdsourcing Limitations

- Expensive
 - CoQA spent 3.6 USD per passage on crowdsourcing
 - Total cost: ~ 30K for ~8400 passage and 127K QA pairs
- Time consuming, hard to scale up
- Generating data for conversational tasks is often complex
 - High cognitive load for workers, low quality data
 - E.g., Preference Elicitation dialogues

Data Augmentation is an affective approach to address the data scarcity issue

With LLMs (as few-shot learners), why do we still need data augmentation?

- Generic LLMs are not aware of sensitive/domain specific data ; e.g.,
 - Product information in a retail domain
 - Sensitive data specific to police domain
- Utilizing LLMs for developing a product is not always possible
 - Time and compute budget constraints by small/medium scale enterprises
 - Although GPT* models are successful products, they remain proprietary and non-replicable
- LLMs themselves are used for data agumentation

LLMs are Moving the Field Forward ...

Input prompt

The chatbot is ... Initiate the conversation and react friendly to the user's utterances. Talk about everyday topics for 10-15 turns and end the call.

###

Al: Hello. Did you sleep well last night?User: Yes, I slept well. Thank you.Al: That's good. I'm glad you slept well. Make sure not to skip any meal.

User: Okay. you eat well, too.

Al: Alright. I'll call you again later.

User: Bye.

###

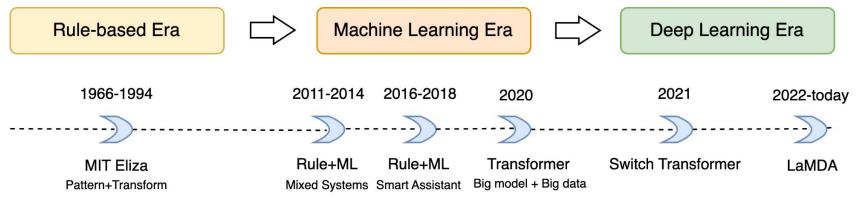
Generated example

Al: Hi, how's your health these days?
User: It's very good.
Al: That's good to hear. Do you work out often?
User: No, I don't have time to.
Al: I see. It would be nice if you could work out at least once a week.
User: That's true. But why do you ask?
Al: It's just that this product has been newly released. I thought it would be helpful to you.

Introduction to Conversational AI

Conversational AI

Systems that are designed to simulate human-like conversations and are used for various purposes. (Zamani et al., 2023)



(Deng et al., 2023)

Two Classes of Conversational AI systems

Task Oriented

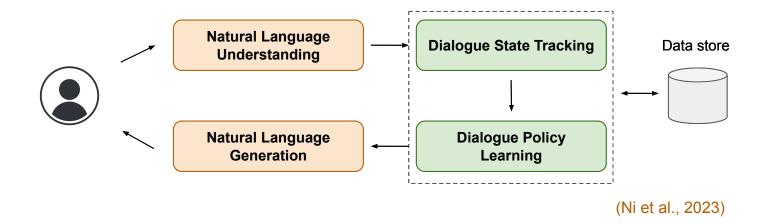
- Focuses on task completion
- Solves specific problems in a certain domain; e.g., restaurant reservation, movie ticket booking, etc.
- Developed using pipeline or end-2-end approaches

Open Domain

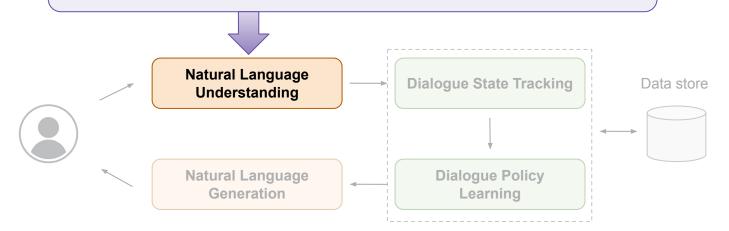
- Aims to chat with users without the task and domain restrictions
- Engage in conversations with users across a wide range of topics and domains
- Usually fully data-driven

Task Oriented Dialogue Systems

- Need to accurately handle users' requests
- Often developed using a modular pipeline approach

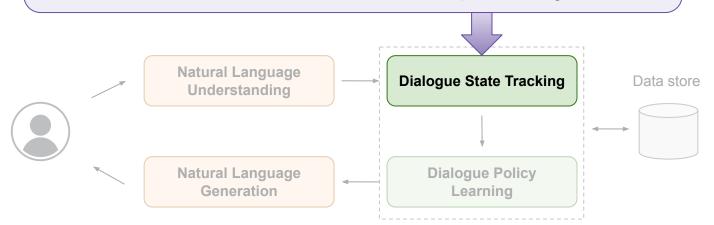


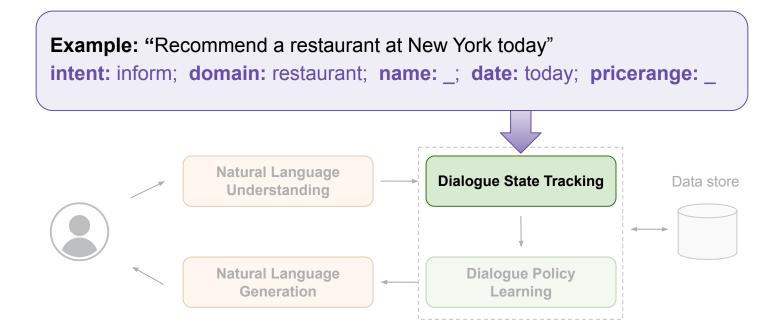
- Parses the input into semantic slots using IOB tagging
- Performs domain classification and intent detection

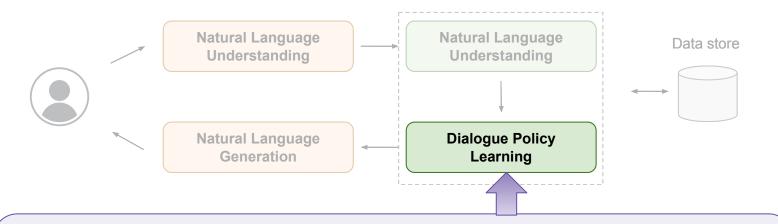


Example	Recommend	а	restaurant	at	New	York	today
Slots	0	0	0	0	B-desti	I-desti	B-time
Intent	inform			Domain		restaurant	
Natural Language Understanding Natural Language Generation				Dialogue State Tracking Data store			Data store

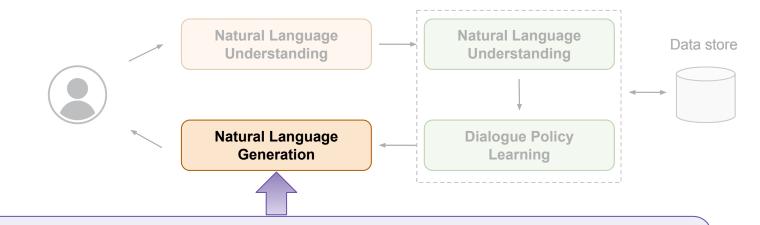
- Looks up the dialogue history and current turn and decides which slots can be filled
- Finds values from user utterances to fill in pre-existing slots list







- Learns a dialogue policy that generates the next satisfactory action based on the current dialogue state
- Often trained using supervised and reinforcement learning
- E.g., Inform (name=Kochi, desti=New York, cuisine=korean)



- Converts the dialogue action from the previous step to natural language representation
- E.g., There is a Korean restaurant called Kochi in New york.

Challenges of Task Oriented Dialogue Systems

• Cross domain transfer

• Task-specific structural constraints make it difficult to expand to new domains

• Diversity and coverage

• Users interact in a multitude of ways towards the same goal

• Accuracy

• Systems need to correctly understand the state of the dialogue

Open Domain Dialogue Systems

Generative Systems

Use sequence-to-sequence models to generate responses that may not be in the training corpus

Retrieval Systems

Retrieval natural and relevant pre-existing responses from a corpus

Ensemble Systems

Combine generative and retrieval methods to:

- → Refine retrieved responses using generative methods or
- → Compare retrieved and generated responses and select the best ones

Challenges of Open Domain Dialogue Systems

• Coherence

• Responses are context-aware (e.g., based on conversation history)

• Informativeness

- Responses are based on documents, pre-defined FAQs, and/or knowledge graphs
- **Proactivity** (Chen et al., 2023, Deng et al., 2023)
 - Ask for clarification
 - Make suggestions
 - Drive the discussion topic forward (target-guided and policy planning)

Tutorial Agenda

