
Part 3: Conversation Generation -
Task Oriented

Duration: 40 min
Presenter: Evangelos Kanoulas (online) & Roxana Petcu

Conv. generation
model

Text or knowledge
graphs

New multi-turn
dialogues

Overview

Data Augmentation for
Conversational AI

Evaluation Generation -
Open domainAugmentation Generation -

Task-oriented

Task-oriented Conversation Dataset Augmentation/Generation

Task-oriented dialogue (TOD) systems assist users in completing tasks, e.g., booking a restaurant
or making an appointment.

Definition

● Task-specific structural constraints

● As a consequence, it requires either a large corpus of annotated dialogue, or a schema

● Difficult to extend to new domains

Challenges

Example of task-oriented dialogue data

User: find a restaurant in orlando.

System: what type of food and price
range should i look for?

User: i’d like moderately priced
taiwanese

Example of task-oriented dialogue data

User: find a restaurant in orlando.

System: what type of food and price
range should i look for?

User: i’d like moderately priced
taiwanese

"dialogue_state": [
 {
 "slot": "location", "value": "orlando"
 }],
"user_acts": [],
"user_intents": ["FIND_RESTAURANT"],
"user_utterance": {
 "slots": [
 {
 "exclusive_end": 5,
 "slot": "location",
 "start": 4
 }
]

Example of task-oriented dialogue data

User: find a restaurant in orlando.

System: what type of food and price
range should i look for?

User: i’d like moderately priced
taiwanese

"dialogue_state": [
 {"slot": "location", "value": "orlando"},
 {"slot": "price_range", "value": "moderately priced"},
 {"slot": "category", "value": "taiwanese"}]

"system_acts": [
 { "slot": "price_range", "type": "REQUEST" },
 { "slot": "category", "type": "REQUEST" }],

"user_acts": [
 { "type": "INFORM" }],
"user_utterance": {
 "slots": [
 { "exclusive_end": 6,
 "slot": "price_range",
 "start": 4},
 { "exclusive_end": 7,
 "slot": "category",
 "start": 6}],
 }

Background & challenges

● Task-oriented dialogue systems work best when trained on dialogues of the
same task; for new tasks datasets of human-agent dialogues typically do
not exists

● Solution A: Collect and annotate free form dialogues through crowdsourcing
using a Wizard-of-Oz setup

○ Expensive
○ May not cover all possible interactions
○ Unfit dialogues (e.g. strange language)
○ Errors in dialogue act annotations (e.g. MultiWOZ has still significant inconsistencies)

Datasets

● MultiWOZ (Budzianowski et al. 2018;)
○ Human-to-human dialogues; 7 domains related to travel and 10,000

dialogues, with corresponding goal instruction and KBs
● MultiWOZ 2.1 (Eric et al. 2019)

○ Human-to-human dialogues; 10,000 dialogues about one or more of 7
domains

● MultiWOZ 2.3 (Han et al. 2021)
○ Corrects the annotations of previous MultiWOZ versions

● WOZ 2.0 (Wen et al. 2017)
○ Human-to-human dialogues; single domain; 235 dialogues

Background & challenges

● Task-oriented dialogue systems work best when trained on dialogues of the
same task; for new tasks datasets of human-agent dialogues typically do
not exists

● Solution B: Develop dialogue experiences/skills (e.g. through wit.ai)
○ Engineer every aspect of the conversational interaction and anticipate all ways user might

interact

Overall Goals:

(1) Reduce the cost and effort required to build dialogue datasets by
○ automating the task-independent steps;
○ leaving the task-specific aspects to the developer.

(2) Improve the quality of dialogues by improving
○ the diversity of language and dialogue flow;
○ the coverage of all expected user behaviour;
○ the correctness of labels.

Data Generation

Synthetic Conversation Evaluation

Intrinsic Evaluation
Evaluate directly the quality of generated dialogue

- Automatic evaluation

- Human annotation

Extrinsic Evaluation
Train the dialogue model with synthetically generated data and evaluate the performance on

downstream taks

● Flow diversity
○ unique transitions at the

semantic frame level
(dialogue act, slots, values)

Synthetic Conversation Evaluation
Dialogue diversity Few-shot abilities

● Compute the log probability of generated
dialogues on the target domain using an
LM trained on human-generated data in
the target domain

● Train dialogue state tracking models in a
zero-shot/few-shot scenario (withhold
one domain from training) and measure
slot accuracy

NeuralWOZ (zero-shot)

VHDA (few-shot)

Unified-US (few-shot)

Data-driven generation

Overview
Open Domain

Post-LLM

TUS

JOUST

Data-driven user
simulator

HUS

NUS

Pre-LLM

Task-oriented

Generation

Agenda- / Rule- /
Schema-based

M2M

SGD

ADTM

ABUS

Rule-based Generation: M2M (Shah et al.,2018)

Goal: Automatically generate dialogues and
annotations

Task: Finding an entity (e.g. a book, a movie, etc.)

Schema: Entity attributes (e.g. the columns of a
database that stores all entities)

API client returns entities using valid combination
of attributes

Given a schema generate a user goal by randomly
choosing values for all slots in the schema

Rule-based Generation: M2M

Rule-based Generation: M2M

A framework that combines automation and crowdsourcing

● Machine-to-Machine: Given a user profile p, a user goal g, a task Schema S and an API client C
generate dialogue outlines

○ User bot vs. System bot
○ User bot:

■ Agenda-based user simulator
■

○ System bot:
■ Finite state machine that encodes a manually defined set of rules that follows a

predetermined sequence of sub-dialogues (i.e. dialogue act transitions)
■

Rule-based Generation: M2M

A framework that combines automation and
crowdsourcing

● Machine-to-Machine: Given a user profile p, a user goal g, a
task Schema S and an API client C generate dialogue outlines

○ User bot vs. System bot

Rule-based Generation: M2M

A framework that combines automation and
crowdsourcing

● Machine-to-Machine: Given a user profile p, a user goal g, a
task Schema S and an API client C generate dialogue outlines

○ User bot vs. System bot
○ Template-based natural language + paraphrasing

through crowdsourcing

Rule-based Generation: Drawbacks

● Developers define many ingredients of the simulations
○ developers define domain schema, rules, and dialogue templates to simulate user behavior

under certain goals, and
○ dialogues are realized by predefined mapping rules or paraphrasing by crowdworkers.

● Requires expert knowledge
● Rules, templates, schemas become intractable for complex domains

● Hard to transfer knowledge across domains

Overview
Open Domain

Agenda- / Rule- /
Schema-based

Post-LLM

M2M

SGD

TUS

JOUST

ADTM

Data-driven user
simulator

ABUS

HUS

NUS

Pre-LLM

NeuralWOZ (zero-shot)

VHDA (few-shot)

Unified-US (few-shot)

Data-driven generation

Task-oriented

Generation

Data-driven Generation: NeuralWOZ

● Define a set of goal templates
○ instructions w/ slots

● A goal template is then sampled and
filled in with values from a KB and a goal
instruction is produced.

● The goal instruction is a natural
language text describing constraints of
user behavior in the dialogue including
informable and requestable slots

● The API call results are corresponding
query results

● Define state candidate C as all informable
slots of API results not specified in
instructions

● The Collector is a sequence-to-sequence
model

○ Inputs: user goal and state candidate:
<s> ⊕ G ⊕ </s> ⊕ <domain>⊕domaina⊕<slot>⊕Sai

1⊕Vai
1

⊕ ···

○ Model: BART trained on MultiWOZ
○ Output: Dialogue

● Labeler
○ Input: the dialogue, a question (description of

corresponding slot) and the set of answer options
○ Model: Roberta trained on MultiWOZ

Data-driven Generation: NeuralWOZ

Data-driven Generation: Unified-US

Motivation

● Despite NeuralWOZ being zero-shot in terms of data it can mainly be effective to
domains with similar schemas

Data-driven Generation: Unified-US

● End-to-end user simulator
○ Context-to-response model
○ Input: task description, user goal and

dialogue context
○ Trained on public dialogue datasets

● End-to-end system response
○ Input: task description, dialogue

context
● No access to database (entities or

schema)
○ Mark values of potential slots with

special tokens in training
● Mark slot values with special token (| |)

● Pretrained-Language Model: T5
● Pretrain with and without user goal

○ When user goal annotations are not
available, dialog acts are used to deduce
goals: through manually designed templates
+ paraphrasing

● Finetune with target domain; 5%-10%
of dataset to simulate low-resource
setting

● Self-chat between user and system
agents

● Annotation: extract special tokens
from simulator generation and match
with slots in user goal

Data-driven Generation: Unified-US

NeuralWOZ (zero-shot)

VHDA (few-shot)

Unified-US (few-shot)

Data-driven generation

Overview
Open Domain

Agenda- / Rule- /
Schema-based

Post-LLM

M2M

SGD

ADTM

ABUS

Pre-LLM

Task-oriented

Generation

TUS

JOUST

Data-driven user
simulator

HUS

NUS

Data-driven User Simulator: JOUST (Tseng et al. 2021)

● Trains a user simulator and a dialogue policy through reinforcement learning
methods for task-oriented dialogues

● Supervised learning for user simulator and dialogue policy
● Reinforcement learning allows the user simulator (and the dialogue policy) to depart

from known strategies learnt from fixed limited corpus

● Similar approaches: Liu and Lane, 2017 (shared reward); Papangelis et al., 2019 (... but for
single domain dialogues); Takanobu et al., 2020 (role-aware rewards ... but at semantic level)

The DS:

● Processes the dialogue history and
generates a belief state

● Solves a dialogue state tracking
task, e.g. {hotel_area=north}.

Data-driven User Simulator: JOUST

The US:

● Tracks a goal state, update at each
dialogue turn

Pre-LLM

Overview

Open Domain

Task-oriented

Generation

Post-LLM

w/ Fine-tuning w/ Prompting w/ Zero-shot

Simulated-Chat

ICL-US

DIALOGIC LAD

● Fine-tuning pre-trained LLMs: GPT-2, Longformer
● Simulation framework: user simulator and agent simulator

○ User input: instructions
○ Agent input: knowledge base

● Generative Data Augmentation

Post-LLM w/ Fine-tuning: SimulatedChat

● User simulator
○ Inputs: dialog history and instructions
○ Response Generator (GPT-2):

■ Autoregressively generates a pool of candidate utterances
○ Response Selector (Longformer):

■ Assigns a context score for each candidate and returns a
user utterance

■ Why Longformer? It can handle longer contexts
(10 negative for each positive sample)

■ Each response is concatenated to the dialog history
and fed to the Longformer

○ Output: User utterance

Post-LLM w/ Fine-tuning: SimulatedChat

● Agent simulator:
○ Inputs: dialog history , knowledge base and previous user

utterance
○ Query Generator (GPT-2):

■ Generates belief state/query: domain, and key-value pairs
<attribute_name=attribute_value>; with greedy sampling

○ Knowledge Base:
■ Retrieves a set of results key-value pairs

<attribute_name=attribute_value>
○ Response Generator (GPT-2):

■ Autoregressively generates a pool of candidate utterances
○ Response Selector (Longformer):

■ Assigns a context score for each candidate
○ Output: Agent utterance

Post-LLM w/ Fine-tuning: SimulatedChat

● First, train:
○ Modules for the user bot (Response Generator + Response Selector)
○ Modules for the agent bot (Query Generator + Response Generator + Response Selector)

● Then, fine-tune simulator with 5-20% crowdsourced data
● Finally, concatenate the generated data with the original 5-20% data and train a student model
● Compare student with baselines

Post-LLM w/ Fine-tuning: SimulatedChat

Post-LLM w/ Fine-tuning: SimulatedChat

● Requires a lot of computational resources and time for fine-tuning
● When using a complex framework (like this one) we also need to pre-train modules for specific

tasks (Response Generator/Selector, Query Generator)

Post-LLM w/ Fine-tuning: Challenges

w/ Zero-shot

LAD

w/ Fine-tuning

Simulated-Chat

Pre-LLM

Overview

Open Domain

Task-oriented

Generation

Post-LLM

w/ Prompting

ICL-US

DIALOGIC

● LLM (GPT-3) with prompting
● Dialogue Simulation
● Generative Data Augmentation

● In-context generation by prompting with similar examples from a small dataset
● Human involvement is limited: small seed dataset creation

Post-LLM w/ Prompting: DIALOGIC

● Inputs:
○ Ontology (for each domain; slots and possible values)
○ Database DB
○ Small seed dataset

Post-LLM w/ Prompting: DIALOGIC

Methodology:

1. For specified domain, pick ontology

Post-LLM w/ Prompting: DIALOGIC

Methodology:

1. For specified domain, pick ontology
2. Generate target goal : random sampling, value substitution or combination selection

Select in-context dialogues from seed dataset
a. Select dialogues whose goals contain as many common slots as possible with
b. Measured with Jaccard similarity of domain set, and slot set + temp. softmax

Post-LLM w/ Prompting: DIALOGIC

Methodology:

1. For specified domain, pick ontology
2. Generate target goal

Select in-context dialogues from seed
dataset

3. Prompt GPT-3 with and
- Each entry in has a goal and

dialogue
- Task description

Post-LLM w/ Prompting: DIALOGIC

Methodology:

1. For specified domain, pick ontology
2. Generate target goal

Select in-context dialogues from seed dataset
3. Prompt GPT-3 with and
4. GPT-3 generates dialogue
5. Apply automatic verification and revision

- Control GPT-3 predictions due to reliability issues
- Way to manipulate over- and under- generation

in the belief state

Post-LLM w/ Prompting: DIALOGIC

Methodology:

1. For specified domain, pick ontology
2. Generate target goal
3. Select in-context dialogues from seed dataset
4. Prompt GPT-3 with and
5. GPT-3 generates dialogue
6. Apply automatic verification and revision
7. DST Task: keep track of the accumulation of belief states

Post-LLM w/ Prompting: DIALOGIC

● Inputs:
○ Ontology (for each domain; slots and possible values), database DB
○ Small seed dataset

● At each turn, the pipeline generates:
User utterance U with annotations, Belief state B, Query result Q, Dialog act A, System
response S with annotations

Post-LLM w/ Prompting: DIALOGIC

retrieve Query result Q

+=

● Datasets:
○ MultiWOZ, MultiWOZ 2.3
○ Simulate low-resource setting by using 1/5/10% of the training dataset (86/422/843 dialogues)
○ Cost comparison:

■ MultiWOZ ~ 30k$
■ DIALOGIC data construction ~0.006$/training sample and 8,438 samples

● 1% training dataset -> 0.3k + 50$ ~ 0.3k

Post-LLM w/ Prompting: DIALOGIC

● DIALOGIC vs ICL-US:
○ Similarities:

■ Prompting, generation, simulation, GPT-3
■ Goal generator, Prompt builder, Dialogue Evaluation and Revision
■ In-context learning with k-shot dialogue samples based on Jaccard similarity

○ Differences:
■ DIALOGIC goal generator and dialogue retriever are in parallel; in ICL-US it’s sequential

Post-LLM w/ Prompting: DIALOGIC

● Providing a few in-context examples (less than a dozen as in DIALOGIC) is
not enough to encapsulate domain constraints

● Plus, it brings biases by hand-designing a prompt that artificially best fits what
we want from the model

Post-LLM w/ Prompting: Challenges

w/ Fine-tuning w/ Prompting

Simulated-Chat

ICL-US

DIALOGIC

Pre-LLM

Overview

Open Domain

Task-oriented

Generation

Post-LLM

w/ Zero-shot

LAD

● LLMs (GPT-3) with zero-shot generalization
● Tasks: intent prediction, slot filling, next action prediction
● Human Involvement is minimal: create a schema for encapsulating new

domain/task constraints (they go back to a schema-based approach)
● Contains a generation validation step (same as DIALOGIC)

Post-LLM w/ Zero-shot: LAD

● Tasks: intent prediction, slot filling, next action prediction
○ Intent prediction (utterance-level): a model maps utterances to their goal
○ Slot filling (utterance and span-level): a model maps similar slot values to similar

representations
○ Next action prediction (utterance and span-level): a model maps the set of instructions I

and slots S from the current dialogue history to an action a through a policy: ;
therefore, this task requires solving Intent prediction, Slot filling and finding the policy
function

Post-LLM w/ Zero-shot: LAD

● Schemas: intent prediction, slot filling, next action prediction
○ Intent prediction (utterance-level): one utterance per intent
○ Slot filling (utterance and span-level): one utterance per intent AND one utterance per slot

type + using multiple slot values
○ Next action prediction (utterance and span-level): the previous + graph representation

Post-LLM w/ Zero-shot: LAD

(Mosig et al., 2020; Mehri and Eskenazi 2021)

● Schemas: intent prediction, slot filling, next action prediction
○ Intent prediction (utterance-level): one utterance per intent
○ Slot filling (utterance and span-level): one utterance per intent AND one utterance per slot

type + using multiple slot values
○ Next action prediction (utterance and span-level): the previous + graph representation

Post-LLM w/ Zero-shot: LAD

(Mosig et al., 2020; Mehri and Eskenazi 2021)

● Methodology:
1. Seed Data Creation

Traverse schema to
generate seed utterances
and form initial dataset

Post-LLM w/ Zero-shot: LAD

● Methodology:
1. Seed Data Creation
2. Reformulation

Induce linguistic diversity
 by rephrasing the seed

dataset entries into multiple
version of the same
utterance

Post-LLM w/ Zero-shot: LAD

● Methodology:
1. Seed Data Creation
2. Reformulation
3. Validation

Similarly to DIALOGIC,
ensure the structural
constraints are kept by
ensuring all slot values
present in the original
utterance are also present
in the reformulated one

Post-LLM w/ Zero-shot: LAD

● SimulatedChat:
○ Experiment with: add the augmented data

■ MultiWOZ 2.0 (experiment with two e2e models):
● Soloist (init with GPT2-small): transformer auto-regressive model
● MinTL-T5 (init with T5-small): transformer

■ PersonaChat:
● GPT2-small (with augmentation)

○ Baselines:
■ MultiWoz 2.0:

● DAMD (non-augmentation recent baseline)
● DAMD-MADA (dialog-states based augmentation)
● PARG-TSCP

■ PersonaChat:
● GPT2-small (wo augmentation)

● DIALOGIC:
○ Experiment with: same models, but add the augmented data
○ Baselines:

■ MultiWOZ 2.3:
● SimpleTOD (init with GPT2-small)
● MinTL (init with T5-small)
● PPTOD (init with T5-small)

● LAD:
○ Experiment with: same models, but add the augmented data
○ Baselines:

■ Intent Prediction:
● ConvBERT (CBEO)

■ Slot Filling:
● GenSF

■ Next Action Prediction:
● SAM

Post-LLM: Can we compare these models?

SimulatedChat; MultiWOZ 2.0

DIALOGIC; MultiWOZ 2.3

Post-LLM: Can we compare these models?

