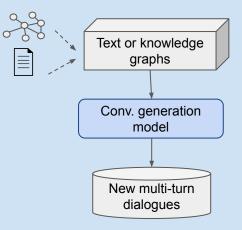
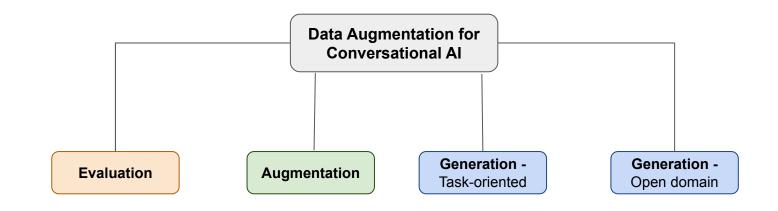
Part 3: Conversation Generation -Task Oriented

Duration: 40 min Presenter: Evangelos Kanoulas (online) & Roxana Petcu



Overview



Task-oriented Conversation Dataset Augmentation/Generation

Definition

Task-oriented dialogue (TOD) systems assist users in completing tasks, e.g., booking a restaurant or making an appointment.

Challenges

- Task-specific structural constraints
- As a consequence, it requires either a large corpus of annotated dialogue, or a schema
- Difficult to extend to new domains

Example of task-oriented dialogue data

User: find a restaurant in orlando.

System: what type of food and price range should i look for?

User: i'd like moderately priced taiwanese

Example of task-oriented dialogue data

User: find a restaurant in orlando.

System: what type of food and price range should i look for?

User: i'd like moderately priced taiwanese

```
"dialogue state": [
        "slot": "location", "value": "orlando"
      }],
"user acts": [],
"user intents": ["FIND RESTAURANT"],
"user utterance": {
      "slots": [
         "exclusive end": 5,
         "slot": "location",
         "start": 4
```

Example of task-oriented dialogue data

User: find a restaurant in orlando.

System: what type of food and price range should i look for?

User: i'd like moderately priced taiwanese "dialogue_state": [{"slot": "location", {"slot": "price_range", {"slot": "category",

"value": "orlando"}, "value": "moderately priced"}, "value": "taiwanese"}]

"system_acts": [

{ "slot": "price_range",	"type": "REQUEST" },
{ "slot": "category",	"type": "REQUEST" }],

```
"user_acts": [
    { "type": "INFORM" } ],
"user_utterance": {
    "slots": [
        { "exclusive_end": 6,
        "slot": "price_range",
        "start": 4},
        { "exclusive_end": 7,
        "slot": "category",
        "start": 6}],
    }
```

Background & challenges

- Task-oriented dialogue systems work best when trained on dialogues of the same task; for new tasks datasets of *human-agent dialogues* typically do not exists
- Solution A: Collect and annotate free form dialogues through *crowdsourcing* using a Wizard-of-Oz setup
 - Expensive
 - May not *cover* all possible interactions
 - Unfit dialogues (e.g. strange language)
 - Errors in *dialogue act annotations* (e.g. MultiWOZ has still significant inconsistencies)

Datasets

- MultiWOZ (Budzianowski et al. 2018;)
 - Human-to-human dialogues; 7 domains related to travel and 10,000 dialogues, with corresponding goal instruction and KBs
- MultiWOZ 2.1 (Eric et al. 2019)
 - Human-to-human dialogues; 10,000 dialogues about one or more of 7 domains
- MultiWOZ 2.3 (Han et al. 2021)
 - Corrects the annotations of previous MultiWOZ versions
- WOZ 2.0 (Wen et al. 2017)
 - Human-to-human dialogues; single domain; 235 dialogues

Background & challenges

- Task-oriented dialogue systems work best when trained on dialogues of the same task; for new tasks datasets of *human-agent dialogues* typically do not exists
- Solution B: Develop dialogue experiences/skills (e.g. through wit.ai)
 - Engineer every aspect of the conversational interaction and anticipate all ways user might interact

Data Generation

Overall Goals:

- (1) Reduce the cost and effort required to build dialogue datasets by
 - automating the task-independent steps;
 - leaving the task-specific aspects to the developer.
- (2) Improve the *quality* of dialogues by improving
 - the *diversity* of language and dialogue flow;
 - the *coverage* of all expected user behaviour;
 - the *correctness* of labels.

Synthetic Conversation Evaluation

Intrinsic Evaluation

Evaluate directly the quality of generated dialogue

- Automatic evaluation
- Human annotation

Extrinsic Evaluation

Train the dialogue model with synthetically generated data and evaluate the performance on downstream taks

Synthetic Conversation Evaluation

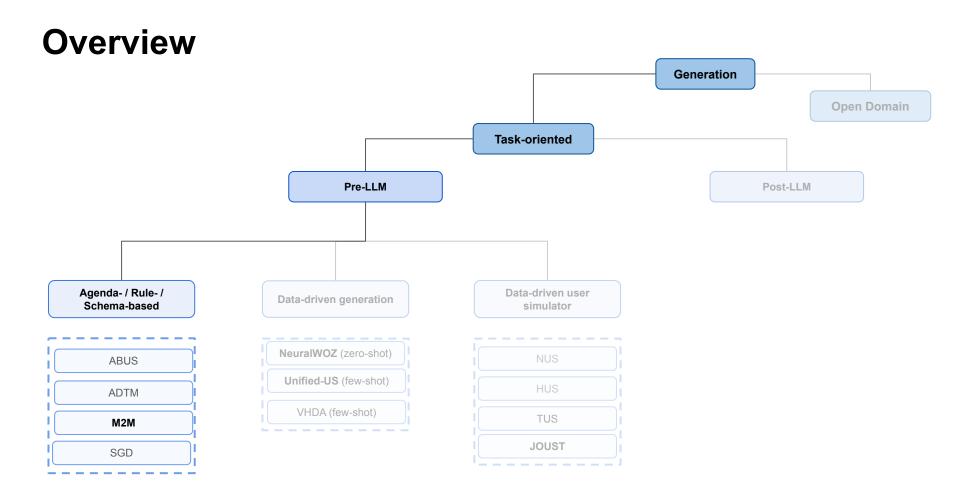
Dialogue diversity

- Flow diversity
 - unique transitions at the semantic frame level (dialogue act, slots, values)

Few-shot abilities

• Compute the log probability of generated dialogues on the target domain using an LM trained on human-generated data in the target domain

• Train dialogue state tracking models in a zero-shot/few-shot scenario (withhold one domain from training) and measure *slot accuracy*



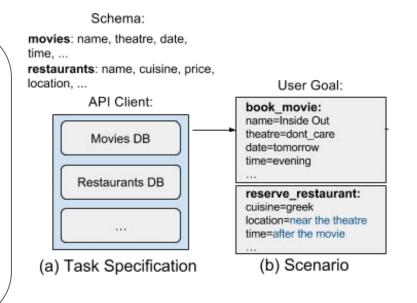
Rule-based Generation: M2M (Shah et al., 2018)

<u>Goal</u>: Automatically generate dialogues and annotations

Task: *Finding an entity* (e.g. a book, a movie, etc.)

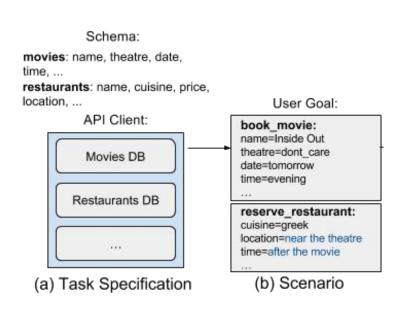
Schema: Entity attributes (e.g. the columns of a database that stores all entities)

API client returns entities using valid combination of attributes



Given a schema generate *a user goal* by randomly choosing values for all slots in the schema

Table 4: List of dialogue acts.						
Dialogue Act	Speaker	Description				
GREETING	User/System	Greet the other speaker				
INFORM	User/System	Inform a slot value				
CONFIRM	User/System	Ask the other speaker to confirm a given slot value				
REQUEST	User/System	Ask for the value of a slot				
REQUEST_ALTS	User	Ask for more alternatives				
OFFER	System	Offer a database entity to the user				
SELECT	System	Offer more than one database entity to the user				
AFFIRM	User/System	Agree to something said by the other speaker				
NEGATE	User/System	Disagree to something said by the other speaker				
NOTIFY_SUCCESS	System	Notify the user of a successful event, e.g. a booking is complete				
NOTIFY_FAILURE	System	Notify the user of a failure event, e.g. a booking isn't available				
THANK_YOU	User/System	Thank the other speaker				
GOOD_BYE	User/System	Say goodbye to the other speaker				
CANT_UNDERSTAND	User/System	Tell the other speaker that their utterance was not understood				
OTHER	User	Unknown utterance type				



A framework that combines automation and crowdsourcing

- Machine-to-Machine: Given a user profile *p*, a user goal *g*, a task Schema *S* and an API client *C* generate dialogue outlines
 - User bot vs. System bot
 - User bot:
 - Agenda-based user simulator
 - $B_{U} = P(\alpha_{j}^{i} | \alpha_{1}^{i}, ..., \alpha_{j-1}^{i}, p_{i}, g_{i})$
 - System bot:
 - Finite state machine that encodes a manually defined set of rules that follows a predetermined sequence of sub-dialogues (i.e. dialogue act transitions)

$$B_S = P(\alpha_{j+1}^i | \alpha_1^i, ..., \alpha_j^i, S, C)$$

A framework that combines automation and crowdsourcing

- Machine-to-Machine: Given a user profile *p*, a user goal *g*, a task Schema *S* and an API client *C* generate dialogue outlines
 - User bot vs. System bot

	Annotation (a_i)				
S: greeting()					
Γ	U: inform(intent=book_movie,				
	name=Inside Out, date=tomorrow,				
L	num_tickets=2)				
	S: ack() request(time)				
	U: inform(time=evening)				
ľ	S: offer(theatre=Cinemark 16,				
L	time=6pm)				
	U: affirm()				
Γ	S: notify_success()				
Γ	U: inform(intent=find_restaurant,				
meal=dinner, location=near the					
L	theatre)				
	S: request(cuisine, price_range)				
	U: inform(cuisine=DontCare,				
	price_range=moderate, rating=high)				
ľ	S: select(restaurant={First Wok,				
	Lucy's Grill}, location=near the				
L	theatre)				
	U: inform(intent=reserve_restaurant,				
	restaurant=First Wok, time=after the				
	movie)				
	S: ack() confirm(restaurant=First				
	Wok, time=8pm, num_people=2)				
	U: affirm()				
ľ	S: notify_success()				
F	U: thank_you() good_bye()				

A framework that combines automation and crowdsourcing

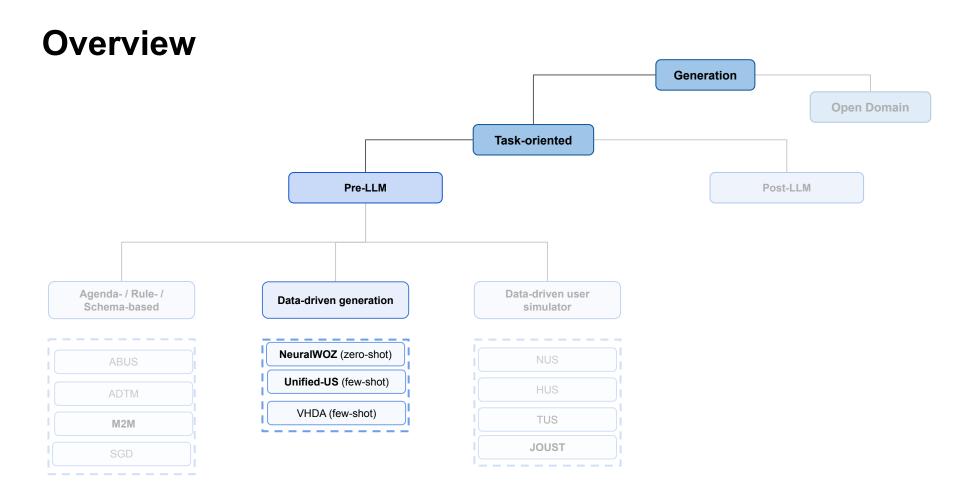
- Machine-to-Machine: Given a user profile *p*, a user goal *g*, a task Schema *S* and an API client *C* generate dialogue outlines
 - User bot vs. System bot
 - Template-based natural language + paraphrasing through crowdsourcing

Annotation (a_i)	Template utterances (t_i)	
S: greeting()	Greeting.	
U: inform(intent=book_movie,	Book movie with name is	
name=Inside Out, date=tomorrow,	Inside Out and date is tomorrow	
num_tickets=2)	and num tickets is 2.	
S: ack() request(time)	OK. Provide time.	
U: inform(time=evening)	Time is evening.	
S: offer(theatre=Cinemark 16,	Offer theatre is Cinemark 16 and	
time=6pm)	time is 6pm.	
U: affirm()	Agree.	
S: notify_success()	Reservation confirmed.	
U: inform(intent=find_restaurant,	Find restaurant with meal is dinner	
meal=dinner, location=near the theatre)	and location is near the theatre.	
S: request(cuisine, price_range)	Provide cuisine and price range.	
U: inform(cuisine=DontCare,	Cuisine is I don't care and price	
price_range=moderate, rating=high)	range is moderate and rating is high.	
S: select(restaurant={First Wok,	Select restaurant from First Wok,	
Lucy's Grill}, location=near the	Lucy's Grill with location is near the	
theatre)	theatre.	
U: inform(intent=reserve_restaurant,	Reserve restaurant with restaurant is	
restaurant=First Wok, time=after the	First Wok and time is after the	
movie)	movie.	
S: ack() confirm(restaurant=First	OK. Confirm restaurant is First Wok	
Wok, time=8pm, num_people=2)	and time is 8pm and num people is 2	
U: affirm()	Agree.	
S: notify_success()	Reservation confirmed.	

Rule-based Generation: Drawbacks

- Developers define many ingredients of the simulations
 - developers define <u>domain schema</u>, <u>rules</u>, and <u>dialogue templates</u> to simulate user behavior under certain goals, and
 - dialogues are realized by predefined <u>mapping rules</u> or paraphrasing by <u>crowdworkers</u>.
- Requires expert knowledge
- Rules, templates, schemas become intractable for complex domains

• Hard to transfer knowledge across domains



Data-driven Generation: NeuralWOZ

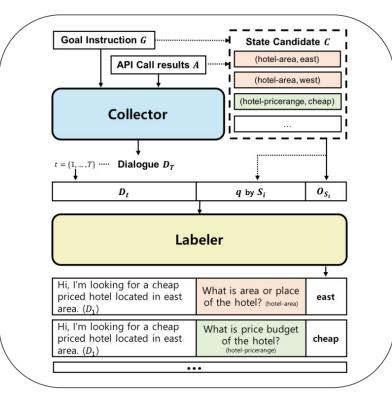
- Define a set of *goal templates*
 - instructions w/ slots
- A goal template is then sampled and filled in with values from a KB and a goal instruction is produced.
- The goal instruction is a natural language text describing constraints of user behavior in the dialogue including informable and requestable slots
- The API call results are corresponding query results

Goal Instruction You are looking for a restaurant. The restaurant should be in the expensive price range and should serve british food. Once you find the restaurant you want to book a table for 2 people at 16:45 on sunday. Make sure you get the reference number. graffiti name british food west area NeuralWOZ expensive pricerange **API Call results** U: Hello, I'm looking for an expensive British restaurant to go to. Can you help me? B1: [(restaurant-pricerange, expensive), (restaurant-food, british)] Domain₁: restaurant S: There are 6 expensive restaurants with British cuisine. recommend graffiti, it is located on Hotel Felix Whitehouse Lane Huntingdon Road. U: That sounds great. Can I book a table for 2 on Sunday at 16:45 please? B2: [(restaurant-pricerange, expensive), (restaurant-food, british), (restaurant-name, graffiti), (restaurant-book people, 2), (restaurant- book day, sunday), (restaurant-book time, 16:45)] Domain₂: restaurant S: Have a great day!

Data-driven Generation: NeuralWOZ

- Define state candidate C as all informable slots of API results not specified in instructions
- The Collector is a sequence-to-sequence model

 - Model: BART trained on MultiWOZ
 - Output: Dialogue
- Labeler
 - Input: the dialogue, a question (description of corresponding slot) and the set of answer options
 - Model: Roberta trained on MultiWOZ



Data-driven Generation: Unified-US

Motivation

• Despite NeuralWOZ being zero-shot in terms of data it can mainly be effective to domains with similar schemas

Data-driven Generation: Unified-US

- End-to-end user simulator
 - Context-to-response model
 - Input: task description, user goal and dialogue context
 - Trained on public dialogue datasets
- End-to-end system response
 - Input: task description, dialogue context
- No access to database (entities or schema)
 - Mark values of potential slots with special tokens in training
- Mark slot values with special token (| |)

Goal: You want to book a taxi. The taxi should go to anatolia and should leave after 22:00. The taxi should depart from kymmoy. Make sure you get car type and contact number.

User: i need a taxi to lanatolial>.

System: what time would you like to leave?

User: i would like to leave after |22:00|>.

System: there are |9| options available to you. where would you like to leave from?

User: i 'd like to leave from kymmoyl>.

System: the fare estimate is |9.78|>. do you want to book this taxi now?

User: no, i would like the contact number if possible.

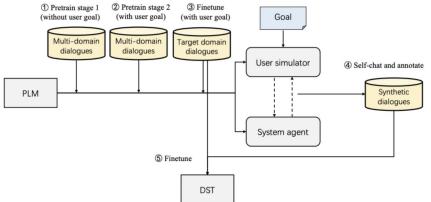
System: the contact number is |07356725299|>

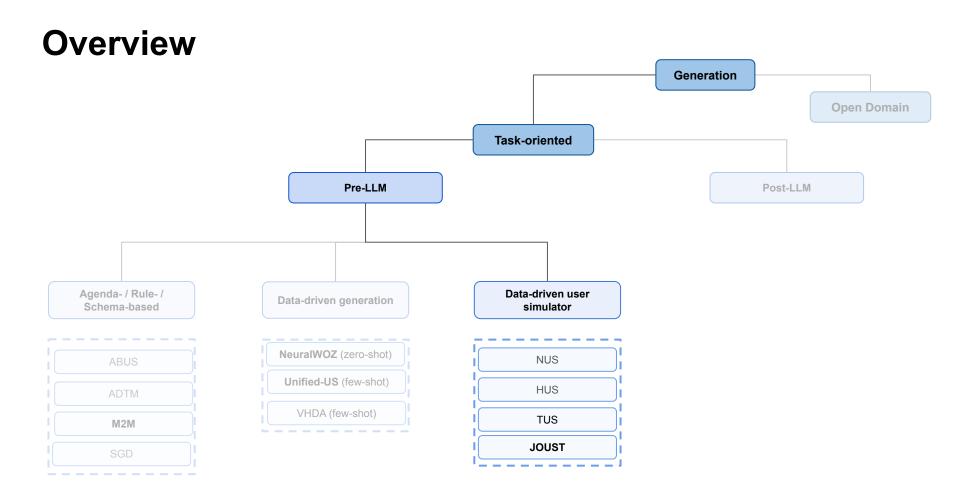
User: thank you very much for your help.

System: you are welcome. do you need anything else today

Data-driven Generation: Unified-US

- Pretrained-Language Model: T5
- Pretrain with and without user goal
 - When user goal annotations are not available, dialog acts are used to deduce goals: through manually designed templates + paraphrasing
- Finetune with target domain; 5%-10% of dataset to simulate low-resource setting
- Self-chat between user and system agents
- Annotation: extract special tokens from simulator generation and match





Data-driven User Simulator: JOUST (Tseng et al. 2021)

- Trains a **user simulator** and a dialogue policy through **reinforcement learning** methods for task-oriented dialogues
- Supervised learning for user simulator and dialogue policy
- Reinforcement learning allows the user simulator (and the dialogue policy) to depart from known strategies learnt from fixed limited corpus

• Similar approaches: Liu and Lane, 2017 (shared reward); Papangelis et al., 2019 (... but for single domain dialogues); Takanobu et al., 2020 (role-aware rewards ... but at semantic level)

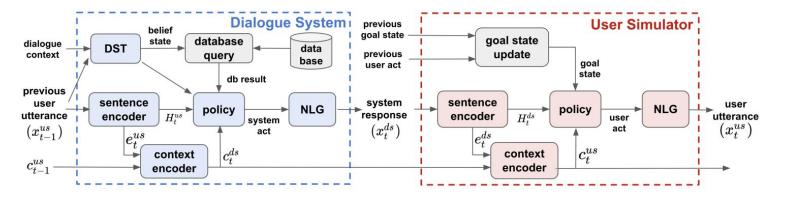
Data-driven User Simulator: JOUST

The DS:

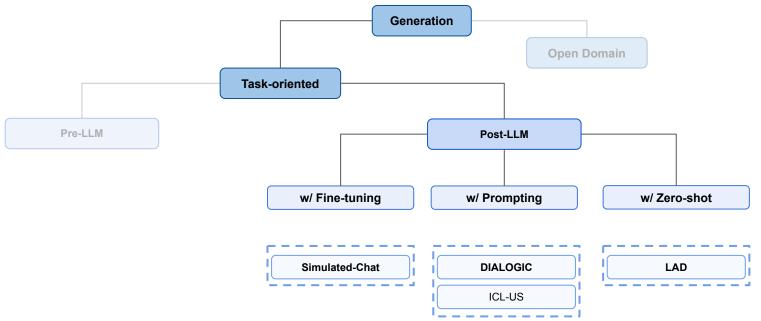
- Processes the dialogue history and generates a belief state
- Solves a dialogue state tracking task, e.g. {hotel_area=north}.

The US:

 Tracks a goal state, update at each dialogue turn



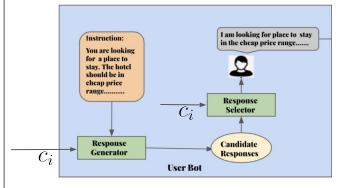
Overview



- Fine-tuning pre-trained LLMs: **GPT-2**, **Longformer**
- Simulation framework: user simulator and agent simulator
 - User input: instructions ${\cal I}$
 - Agent **input**: knowledge base \mathcal{KB}
- Generative Data Augmentation

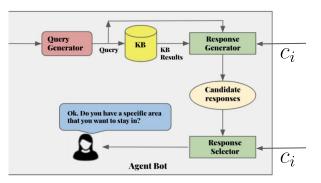
• User simulator

- Inputs: dialog history c_i and instructions ${\cal I}$
- **Response Generator** (GPT-2):
 - Autoregressively generates a pool of candidate utterances
- Response Selector (Longformer):
 - Assigns a context score for each candidate and returns a user utterance
 - Why Longformer? It can handle longer contexts (10 negative for each positive sample)
 - Each response is concatenated to the dialog history and fed to the Longformer
- **Output**: User utterance

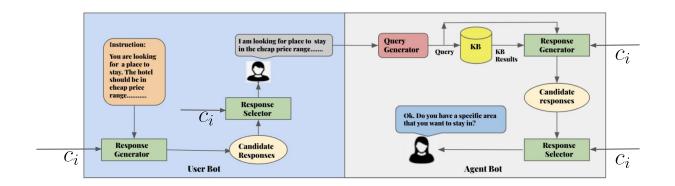


• Agent simulator:

- Inputs: dialog history c_i , knowledge base \mathcal{KB} and previous user utterance u_i
- Query Generator (GPT-2):
 - Generates belief state/query: *domain*, and *key-value* pairs
 <attribute_name=attribute_value>; with *greedy sampling*
- Knowledge Base:
 - Retrieves a set of results key-value pairs <attribute_name=attribute_value>
- **Response Generator** (GPT-2):
 - Autoregressively generates a pool of candidate utterances
- **Response Selector** (Longformer):
 - Assigns a context score for each candidate
- **Output**: Agent utterance



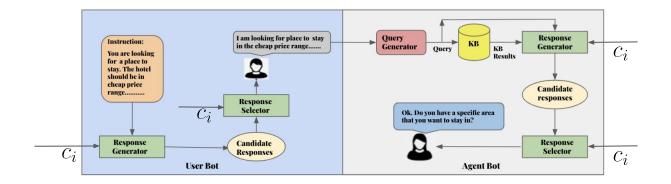
- First, train:
 - Modules for the user bot (Response Generator + Response Selector)
 - Modules for the agent bot (Query Generator + Response Generator + Response Selector)
- Then, fine-tune simulator with 5-20% crowdsourced data
- Finally, concatenate the generated data with the original 5-20% data and train a *student* model
- Compare *student* with baselines



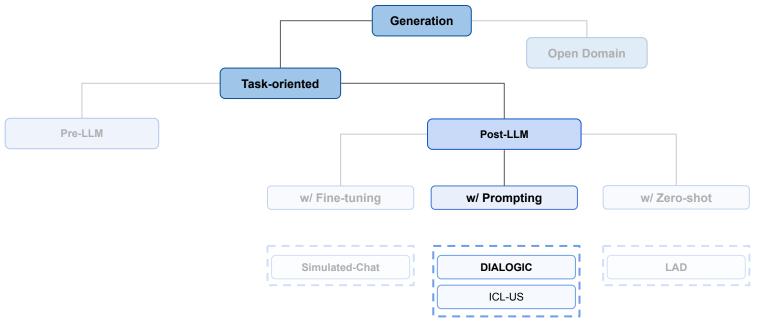
вот	MODULE INPUT		OUTPUT
	Response Generator	[CLS]You are looking for a[GOAL][St@rt][User] I need a train to Cambridge.[Agent] Sure, which day would you like to travel?[SEP]	[User] I would like to travel this [DAY] at [TIME].
User	Response Selector	[CLS][St@rt][User] I need a[Agent] Sure, which day would you like to travel?[CAN][User] I would like to travel this [DAY] at [TIME].[SEP]	0.92
	Query Generator	[CLS][St@rt][User] I need a[Agent] Sure, which day would you like to travel?[User] I would like to travel this Sunday at 9PM.[SEP]	[Q] Train Destination=Cambridge Day=Sunday Time=9PM [Q]
Agent	Response Generator	[CLS][Q] Train Destination=Cambridge Day=Sunday Time=9PM [KB] Total = 2 [St@rt][User] I need a[Agent] Sure,travel?[User] I would at 9PM.[SEP]	[Agent] I can see [value_count] trains available for [train_destination]. How many tickets do you need?
	Response Selector	[CLS][St@rt][User] I need a[Agent] Suretravel? [User] I would at 9PM.[CAN][Agent] I canfor [train_destination]. How many tickets do you need?[SEP]	0.83

Post-LLM w/ Fine-tuning: Challenges

- Requires a lot of computational resources and time for fine-tuning
- When using a complex framework (like this one) we also need to pre-train modules for specific tasks (Response Generator/Selector, Query Generator)

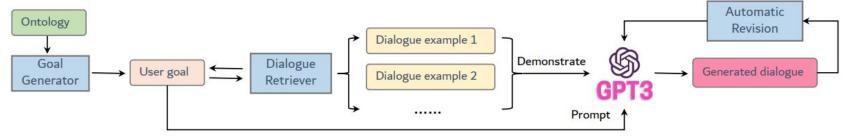


Overview



- LLM (GPT-3) with prompting
- Dialogue Simulation
- Generative Data Augmentation

- In-context generation by prompting with similar examples from a small dataset
- Human involvement is limited: small seed dataset creation



• Inputs:

- Ontology \mathcal{O} (for each domain; slots and possible values)
- Database DB
- \circ Small seed dataset \mathcal{D}_s

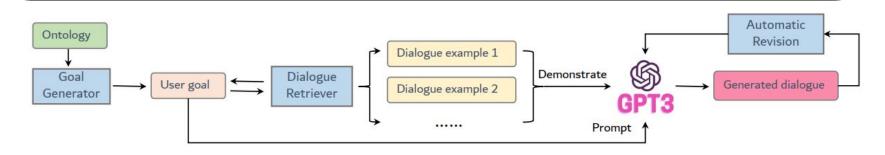
Methodology:

1. For specified domain, pick ontology \mathcal{O}_j

Methodology:

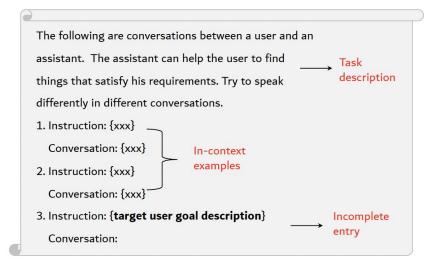
- 1. For specified domain, pick ontology \mathcal{O}_j
- 2. Generate target goal G_i : random sampling, value substitution or combination selection Select in-context dialogues $\mathcal{D}_{s,i}$ from seed dataset \mathcal{D}_s
 - a. Select dialogues whose goals contain as many common slots as possible with G_i
 - b. Measured with Jaccard similarity of domain set, and slot set + temp. softmax

 $w_{ij} = \left| \frac{D(\mathcal{G}_i) \bigcap D(\mathcal{G}_j)}{D(\mathcal{G}_i) \bigcup D(\mathcal{G}_j)} \right| \cdot \left| \frac{S(\mathcal{G}_i) \bigcap S(\mathcal{G}_j)}{S(\mathcal{G}_i) \bigcup S(\mathcal{G}_j)} \right|$



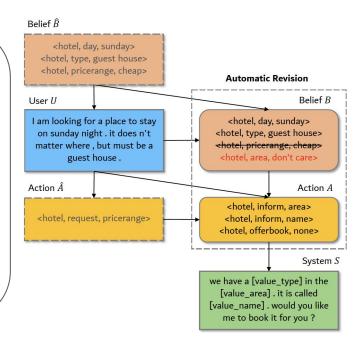
Methodology:

- 1. For specified domain, pick ontology \mathcal{O}_j
- 2. Generate target goal G_i Select in-context dialogues $\mathcal{D}_{s,i}$ from seed \mathcal{D}_s dataset
- 3. Prompt GPT-3 with G_i and $D_{s,i}$
 - Each entry in $\mathcal{D}_{s,i}$ has a goal and dialogue
 - Task description



Methodology:

- 1. For specified domain, pick ontology \mathcal{O}_j
- 2. Generate target goal G_i Select in-context dialogues $\mathcal{D}_{s,i}$ from seed dataset \mathcal{D}_s
- 3. Prompt GPT-3 with G_i and $D_{s,i}$
- 4. GPT-3 generates dialogue C_i
- 5. Apply automatic verification and revision
 - Control GPT-3 predictions due to reliability issues
 - Way to manipulate over- and under- generation in the belief state



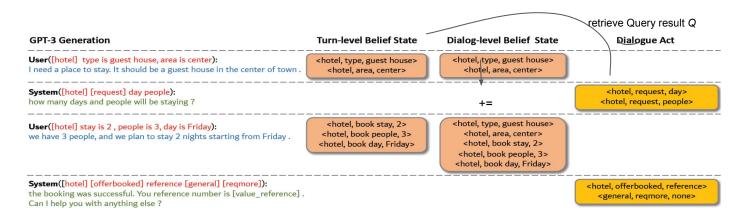
Methodology:

- 1. For specified domain, pick ontology \mathcal{O}_j
- 2. Generate target goal G_i
- 3. Select in-context dialogues $\mathcal{D}_{s,i}$ from seed dataset \mathcal{D}_s
- 4. Prompt GPT-3 with \mathcal{G}_i and $\mathcal{D}_{s,i}$
- 5. GPT-3 generates dialogue C_i
- 6. Apply automatic verification and revision
- 7. DST Task: keep track of the accumulation of belief states

• Inputs:

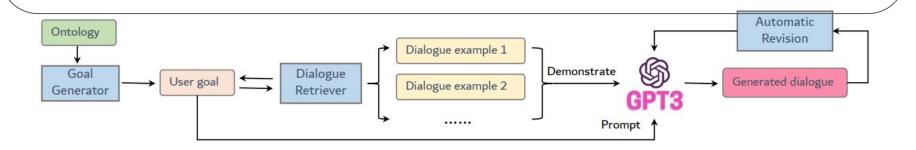
- Ontology \mathcal{O} (for each domain; slots and possible values), database DB
- Small seed dataset \mathcal{D}_s
- At each turn, the pipeline generates:

User utterance U with annotations, \rightarrow Belief state B, \rightarrow Query result Q, \rightarrow Dialog act A, \rightarrow System response S with annotations



• Datasets:

- MultiWOZ, MultiWOZ 2.3
- Simulate low-resource setting by using 1/5/10% of the training dataset (86/422/843 dialogues)
- Cost comparison:
 - MultiWOZ ~ 30k\$
 - DIALOGIC data construction ~0.006\$/training sample and 8,438 samples
 - 1% training dataset -> 0.3k + 50\$ ~ 0.3k

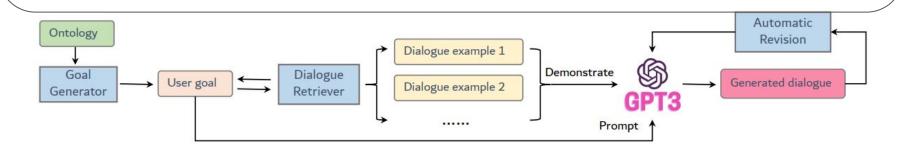


• DIALOGIC vs ICL-US:

- Similarities:
 - Prompting, generation, simulation, GPT-3
 - Goal generator, Prompt builder, Dialogue Evaluation and Revision
 - In-context learning with k-shot dialogue samples based on Jaccard similarity

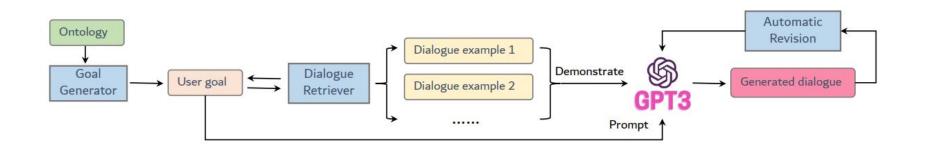
• Differences:

■ DIALOGIC goal generator and dialogue retriever are in parallel; in ICL-US it's sequential

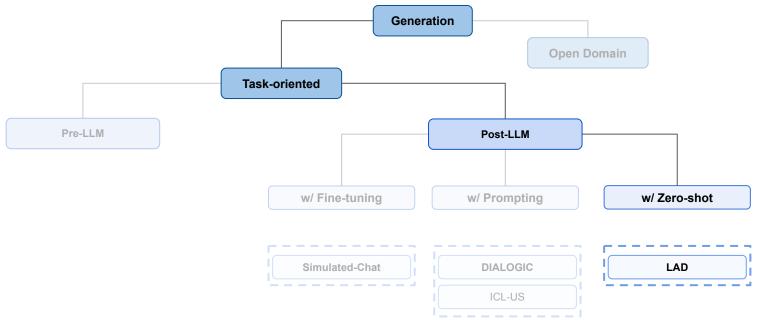


Post-LLM w/ Prompting: Challenges

- Providing a few in-context examples (less than a dozen as in DIALOGIC) is not enough to encapsulate domain constraints
- Plus, it brings biases by hand-designing a prompt that artificially best fits what we want from the model



Overview

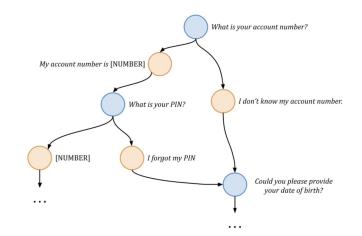


- LLMs (GPT-3) with zero-shot generalization
- Tasks: intent prediction, slot filling, next action prediction
- Human Involvement is minimal: create a *schema* for encapsulating new domain/task constraints (they go back to a *schema-based* approach)
- Contains a generation validation step (same as DIALOGIC)

- Tasks: intent prediction, slot filling, next action prediction
 - Intent prediction (utterance-level): a model $\mathcal{M}_{\mathcal{I}}$ maps utterances to their goal
 - Slot filling (utterance and span-level): a model $\mathcal{M}_{\mathcal{S}}$ maps similar slot values $w_{i:i+k}$ to similar representations
 - Next action prediction (utterance and span-level): a model $\mathcal{M}_{\mathcal{A}}$ maps the set of instructions I and slots S from the current dialogue history to an action a through a policy: $a = policy(\mathcal{I}_{\mathcal{D}}, \mathcal{S}_{\mathcal{D}})$; therefore, this task requires solving Intent prediction, Slot filling and finding the policy function

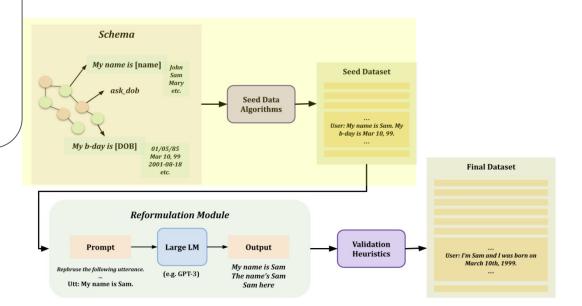
- Schemas: intent prediction, slot filling, next action prediction
 - Intent prediction (utterance-level): one utterance per intent
 - **Slot filling** (utterance and span-level): one utterance per intent AND one utterance per slot type + using multiple slot values
 - **Next action prediction** (utterance and span-level): the previous + graph representation (Mosig et al., 2020; Mehri and Eskenazi 2021)

- Schemas: intent prediction, slot filling, next action prediction
 - Intent prediction (utterance-level): one utterance per intent
 - **Slot filling** (utterance and span-level): one utterance per intent AND one utterance per slot type + using multiple slot values
 - **Next action prediction** (utterance and span-level): the previous + graph representation (Mosig et al., 2020; Mehri and Eskenazi 2021)



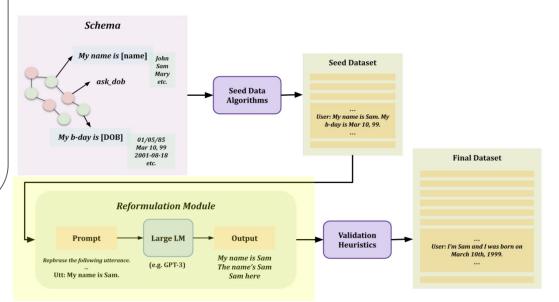
- Methodology:
 - 1. Seed Data Creation

Traverse *schema* to generate seed utterances and form initial dataset



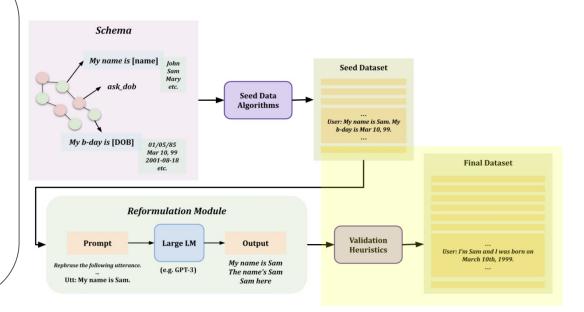
- Methodology:
 - 1. Seed Data Creation
 - 2. Reformulation

Induce linguistic diversity by rephrasing the seed dataset entries into multiple version of the same utterance



- Methodology:
 - 1. Seed Data Creation
 - 2. Reformulation
 - 3. Validation

Similarly to DIALOGIC, ensure the structural constraints are kept by ensuring all *slot values* present in the original utterance are also present in the reformulated one



Post-LLM: Can we compare these models?

- SimulatedChat:
 - Experiment with: add the augmented data
 - MultiWOZ 2.0 (experiment with two e2e models):
 - Soloist (init with GPT2-small): transformer auto-regressive model
 - MinTL-T5 (init with T5-small): transformer
 - PersonaChat:
 - GPT2-small (with augmentation)
 - Baselines:
 - MultiWoz 2.0:
 - DAMD (non-augmentation recent baseline)
 - DAMD-MADA (dialog-states based augmentation)
 - PARG-TSCP
 - PersonaChat:
 - GPT2-small (wo augmentation)
- DIALOGIC:
 - Experiment with: same models, but add the augmented data
 - Baselines:
 - MultiWOZ 2.3:
 - SimpleTOD (init with GPT2-small)
 - MinTL (init with T5-small)
 - PPTOD (init with T5-small)

- LAD:
 - Experiment with: same models, but add the augmented data
 - Baselines:
 - Intent Prediction:
 - ConvBERT (CBEO)
 - Slot Filling:
 - GenSF
 - Next Action Prediction:
 - SAM

Post-LLM: Can we compare these models?

MODELS	5%				20%				100%			
	B	Ι	S	С	В	Ι	S	С	B	Ι	S	С
MinTL-T5-Small (Lin et al., 2020b)	12.5	50.9	33.9	55.7	15.8	63.5	48.8	72.0	17.4	80.1	64.7	89.8
MinTL-T5-Small (Sim. Aug)	13.1	57.6	36.1	60.0	16.0	68.0	55.1	76.6	18.5	79.5	57.1	86.8

SimulatedChat; MultiWOZ 2.0

2 2.0								
_ 2.0	Seed	Augmented	MinTL-T5					
	data	data	Ι	S	В	С		
	1% (85)	Base	56.81	40.38	12.16	60.76		
		+Orig.(85)	64.93	50.20	12.37	70.13		
		+Sim.(85)	69.44	50.30	12.46	72.33		
	5%	Base	74.05	60.42	14.71	82.70		
		+Orig.(422)	72.24	60.42	14.91	81.24		
	(422)	+Sim.(422)	77.45	64.93	13.98	85.17		
	10% (843)	Base	72.24	60.42	14.91	81.24		
		+Orig.(843)	78.76	68.74	15.92	89.67		
		+Sim.(843)	79.96	69.84	15.41	90.31		
	100%	Base	80.06	72.85	17.87	94.33		
		+Sim.(422)	79.46	73.45	18.52	94.98		
DIALOGIC; MultiWOZ 2.3	(8438)	+Sim.(843)	80.76	74.15	18.72	96.18		