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ABSTRACT
Advancements in conversational systems have revolutionized infor-
mation access, surpassing the limitations of single queries. However,
developing dialogue systems requires a large amount of training
data, which is a challenge in low-resource domains and languages.
Traditional data collection methods like crowd-sourcing are labor-
intensive and time-consuming, making them ineffective in this
context. Data augmentation (DA) is an affective approach to al-
leviate the data scarcity problem in conversational systems. This
tutorial provides a comprehensive and up-to-date overview of DA
approaches in the context of conversational systems. It highlights
recent advances in conversation augmentation, open domain and
task-oriented conversation generation, and different paradigms of
evaluating these models. We also discuss current challenges and
future directions in order to help researchers and practitioners to
further advance the field in this area.
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1 INTRODUCTION

Motivation. The development of dialogue systems has garnered
significant attention and demand in both industry and everyday
life due to their diverse range of functionalities that cater to user
needs. These systems can be broadly classified into two categories:
task-oriented dialogue systems (TOD) and open-domain dialogue
systems (ODD) [37]. TOD systems are specifically designed to ad-
dress particular problems within a specific domain, with the ob-
jective of performing tasks like ticket or table reservations. Thus,
their primary focus is task completion. On the other hand, ODD
systems engage in unrestricted conversations on a wide range of
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topics [37]. The main challenge of OOD systems thus lies in han-
dling consistency and seamless transitioning between turns in the
conversation.

The progress of dialogue systems relies heavily on the use of
large neural models, similar to other natural language processing
(NLP) tasks, and as a result, their effectiveness is contingent upon
the availability of substantial amounts of training data [61]. The
dependence on large scale training data challenges development of
dialogue agents, particularly for low resource settings with limited
or no training data. While crowd-sourcing serves as the primary
method for generating datasets in dialogue systems, it’s labor in-
tensive nature possesses limitations concerning time, cost, and
scalability [28]. The scarcity of data for diverse and specific do-
mains, compounded by the difficulty of adapting existing datasets
or generating entirely new ones calls for alternative methods of
training dialogue systems.

To tackle the issue of data shortage in dialogue systems, several
methods have been proposed, including semi-supervised learning
and data augmentation (DA) [54]. While semi-supervised learn-
ing is a promising approach, relying solely on existing dialogue
datasets presents a classic chicken-and-egg problem. DA, on the
other hand, involves generating conversation samples from exter-
nal resources, such as unstructured text files and structured data
like knowledge graphs. This approach serves multiple purposes: it
diversifies datasets, introduces novel conversational scenarios, and
enhances control over the flow of the generated conversation.

In this tutorial, we aim to offer a comprehensive overview of
conversation generation and augmentation methods for TOD and
ODD systems. We delve into the specific challenges that must be
addressed when undertaking the task of creating new dialogue data.
To provide a comprehensive package for dialogue data creation,
we also present an overview of evaluation methods and available
datasets that can be utilized to assess the quality and performance of
the generated dialogue data. By covering these aspects, our tutorial
offers a holistic understanding of the methods, challenges, and
evaluation procedures associated with the dialogue data creation.

Previous tutorials. Our tutorial builds upon two key concepts:
conversational systems and DA. Tutorials that discuss these con-
cepts in recent years include:

• Conversational Recommender Systems [7] in RecSys 2020.
This tutorial focuses on the foundations and algorithms for
conversational recommendation and their application in real-
world systems like search engines, e-commerce, and social
networks.

• Conversational Information Seeking: Theory and Applica-
tion [5] in SIGIR 2022. The tutorial aims to provide an intro-
duction to Conversational Information Seeking (CIS), cover-
ing recent advanced topics and state-of-the-art approaches.
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• Self-Supervised Learning for Recommendation [13] in CIKM
2022. This tutorial aims to present a systematic review of
state-of-the-art self-supervised learning (SSL)-based recom-
mender systems.

• Limited Data Learning [54] in ACL 2022. This tutorial offers
an overview of methods alleviating the need for labeled data
in NLP, including DA and semi-supervised learning.

• Proactive Conversational Agents [29] in WSDM 2023. This
tutorial introduces methods to equip conversational agents
with the ability to interact with end users proactively.

Unlike previous tutorials that focus on either conversational
systems or the data scarcity problem, this tutorial provides an in-
depth exploration of the challenges associated with augmenting and
creating conversational data, highlighting the unique difficulties
posed in conversational context. To the best of our knowledge, no
tutorial has specifically focused on dataset creation techniques for
dialogue systems.

Target audience and prerequisites. This tutorial is designed
for professionals, students, and researchers in information retrieval
and natural language processing, specifically interested in conver-
sational AI. Familiarity with machine learning, deep learning, and
transformers is required. No prior knowledge of dialogue system
models or data augmentation methods is necessary.

Tutorial material. Tutorial slides, a collection of essential ref-
erences, and other support materials can be found at the tutorial
website https://dataug-convai.github.io.

2 TUTORIAL OUTLINE
We plan to give a half-day tutorial (three hours). The tutorial starts
by an introduction, followed by three main sessions. We plan to
have a short Q&A after each session and conclude the tutorial
with a discussion on evaluation, future direction, and a final Q&A
session.

2.1 Agenda
A tentative schedule of the tutorial is as follows.

(1) Introduction (10 min)
1.1 Conversational Systems
1.2 Problem of Data Scarcity
1.3 Data Augmentation

(2) Conversation Augmentation (30 min)
2.1 Generic Token-level & Sentence-level Augmentation
2.2 Dialogue Data Augmentation

(3) Conversation Generation: Open Domain (80 min)
3.1 Single-turn QA Pair Generation
3.2 Multi-turn Dialogue Generation
3.3 Topic-aware Dialogue Agent

(4) Conversation Generation: Task-oriented (40 min)
4.1 Schema-guided Generation
4.2 Simulator-Agent Interaction
4.3 E2E Dataset Creation

(5) Evaluation (10 min)
(6) Conclusion and Future Direction (10 min)

2.2 Content
Introduction. We start by introducing the audience to the ba-

sics of conversational systems, including TOD and ODD systems.
We provide an overview of the components and concepts associ-
ated with TOD and ODD systems, ensuring that participants can
grasp the necessary knowledge to follow the tutorial independently.
We further discuss the data scarcity problem in creating dialogue
systems, particularly in low-resource domains and languages and
give an introduction to the proposed techniques to tackle this issue.
Given that dialogue datasets may not be available for all languages
and domains, we discuss dialogue generation methods that lever-
age external resources such as unstructured text files, knowledge
graphs, and Large Language Models (LLMs).

Conversation Augmentation. We proceed by providing an
overview of existing works in conversation augmentation. Aug-
mentation techniques have demonstrated effectiveness in various
NLP tasks, involving the creation of new samples through mod-
ifications of existing ones. However, augmenting dialogue data
requires precision due to the interconnected nature of multi-turn
user-bot utterances, presenting additional challenges. Within aug-
mentation methods, there are two broad categories applicable to
text-based tasks: token-based [2, 8, 16, 17, 21, 23, 33, 50, 59, 62] and
sentence-based [3, 22, 60] approaches. These categories involve
the replacement of original tokens or sentences with relevant al-
ternatives. We discuss specific techniques have been proposed to
generate new dialogue samples for both TOD [9, 24, 27, 57] and
ODD [26, 38, 39, 63] systems. These models employ generative mod-
els, RL-based models, counterfactual learning, or user dialogue act
augmentation and offer new avenues to generate dialogue samples,
further enriching the available training data for dialogue systems.

Conversation Generation: Open Domain. In this part of our
tutorial, we focus on the methods available for generating dialogue
samples for an ODD system. The pipeline approach, initially intro-
duced for synthetic QA pair generation [1], is one way to generate
ODD samples. This method consists of four sequential stages: pas-
sage selection, answer extraction, question generation, and a sub-
sequent filtering process to maintain quality of generated QA pairs.
Building upon the successful generation of QA pairs [25, 31, 40, 55],
researchers have extended the pipeline approach to generate com-
plete conversation samples, addressing challenges such as sub-
passage selection, flow consistency, coreference alignment, and
handling different question types [6, 10, 11, 14, 18, 35, 51]. However,
a major limitation of the pipeline approach is that the conversation’s
flow is primarily determined by the passage’s flow. This means that
a passage is initially divided into multiple chunks, and each turn of
the conversation is generated based on its corresponding chunk. To
achieve more control over the conversation flow, one potential solu-
tion involves generating a multi-turn conversation along a path of
entities or keywords extracted from a knowledge graph (KG). Based
on this idea, various tasks have been defined to connect the initial
entity or sentence to the target entity. One such task is the one-turn
topic transition, which generates a "bridging" utterance to connect
the newly introduced topic to the previous turn’s topic [12, 20, 43].
Additionally, we introduce target-oriented dialogue systems, where
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models actively guide conversations towards predefined target top-
ics, ensuring smooth transitions and progress towards the desired
targets [41, 45, 56, 65]. Furthermore, we explore goal-directed di-
alogue planning strategies that empower the dialogue system to
embrace a discourse-level perspective, taking into account the over-
arching objective of the conversation, with the aim of generating a
response that aligns with it [36, 49, 52, 53].

Conversation Generation: Task-oriented. We next discuss the
conversation generation methods for TOD systems. In such sys-
tems, the primary objective of the dialogue system is to understand
the user’s intent throughout a multi-turn conversation and subse-
quently provide relevant suggestions to assist the user in achieving
their goal. However, accurately capturing the essential information
from the user’s utterances to ensure successful task completion
requires meticulous attention and domain expertise [37].

We begin by introducing schema-guided generation methods [42,
44], which leverages self-play models to generate dialogues. The
generated dialogues are then annotated and filtered using crowd-
sourcing techniques. Another approach focuses on enhancing user
simulator models, which simulate user behavior and engage in con-
versations with dialogue systems to generate dialogues for training
and evaluation [30, 34, 46–48, 64]. Improvements in these simula-
tors contribute to overall enhancements in dialogue system perfor-
mance and their ability to handle diverse user inputs and scenarios.
Lastly, we explore end-to-end approaches that aim to directly gen-
erate dialogue without explicitly defining intermediate steps or
modules [4, 19, 28, 32, 58]. End-to-end models offer the advantage
of encapsulating the entire dialogue generation process within a
single model, simplifying both training and inference procedures.

Evaluation. After discussing dialogue data creation methods,
we turn into evaluating the quality of these data. The evaluation pro-
cess encompasses two levels: turn-level evaluation and global-level
evaluation [14, 15, 56, 65]. At the turn-level, the system’s response
is compared to the ground-truth response, and this evaluation pri-
marily relies on automatic metrics. Moving to the global-level eval-
uation, the aim is to assess the overall conversation quality by
considering characteristics such as naturalness, coherence, answer-
ability, and success rate in achieving targets. This evaluation level
involves generating conversation samples through interactions
between the dialogue system and a user simulator or a human, fol-
lowed by scoring the entire conversation sample. Alternatively, the
generated data can be used to train downstream tasks [19, 34, 48],
and the resulting improvements in performance can be measured.
We thoroughly discuss the advantages and disadvantages of these
evaluation methods, considering their suitability for different sce-
narios.

Conclusion and Future Direction. We conclude the tutorial
with an exploration of open research problems and future directions
in the field.
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