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ABSTRACT
Advancements in conversational systems have revolutionized infor-
mation access, surpassing the limitations of single queries. However,
developing dialogue systems requires a large amount of training
data, which is a challenge in low-resource domains and languages.
Traditional data collection methods like crowd-sourcing are labor-
intensive and time-consuming, making them ineffective in this
context. Data augmentation (DA) is an effective approach to al-
leviate the data scarcity problem in conversational systems. This
tutorial provides a comprehensive and up-to-date overview of DA
approaches in the context of conversational systems. It highlights
recent advances in open domain and task-oriented conversation
generation, and different paradigms of evaluating these models. We
also discuss current challenges and future directions in order to
help researchers and practitioners to further advance the field in
this area.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Discourse, dialogue and pragmatics.
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1 INTRODUCTION

Motivation. The development of dialogue systems has garnered
significant attention and demand in both industry and everyday life
due to their diverse range of functionalities that cater to user needs.
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These systems can be broadly classified into two categories: task-
oriented dialogue systems (TOD) and open-domain dialogue sys-
tems (ODD) [26]. TOD systems are specifically designed to address
particular problems within a specific domain, with the objective of
performing tasks like ticket or table reservations [27]. Thus, their
primary focus is task completion. On the other hand, ODD systems
engage in unrestricted conversations on a wide range of topics. The
primary challenge faced by ODD systems is ensuring coherence
and consistency when generating responses. This implies that the
generated responses must be context-aware, taking into account
the conversation history [26].

The progress of dialogue systems relies heavily on the use of
large neural models, similar to other natural language processing
(NLP) tasks, and as a result, their effectiveness is contingent upon
the availability of substantial amounts of training data [45]. The
dependence on large scale training data challenges development of
dialogue agents, particularly for low resource settings with limited
or no training data. While crowd-sourcing serves as the primary
method for generating datasets in dialogue systems, it is labor
intensive nature possesses limitations concerning time, cost, and
scalability [18]. The scarcity of data for diverse and specific do-
mains, compounded by the difficulty of adapting existing datasets
or generating entirely new ones calls for alternative methods of
training dialogue systems.

To tackle the issue of data shortage in dialogue systems, several
methods have been proposed, including semi-supervised learning
and data augmentation (DA) [42]. While semi-supervised learn-
ing is a promising approach, relying solely on existing dialogue
datasets presents a classic chicken-and-egg problem. DA, on the
other hand, involves generating conversation samples from exter-
nal resources, such as unstructured text files and structured data
like knowledge graphs. This approach serves multiple purposes: it
diversifies datasets, introduces novel conversational scenarios, and
enhances control over the flow of the generated conversation.

In this tutorial, we aim to offer a comprehensive overview of
conversation augmentation and generation methods for TOD and
ODD systems. We delve into the specific challenges that must be
addressed when undertaking the task of creating new dialogue data.
To provide a comprehensive package for dialogue data creation,
we also present an overview of evaluation methods and available
datasets that can be utilized to assess the quality and performance of
the generated dialogue data. By covering these aspects, our tutorial
offers a holistic understanding of the methods, challenges, and
evaluation procedures associated with the dialogue data creation.
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Previous tutorials. Our tutorial builds upon two key concepts:
conversational systems and DA. Tutorials that discuss these con-
cepts in recent years include:

• Conversational Recommender Systems [9] in RecSys 2020.
This tutorial focuses on the foundations and algorithms for
conversational recommendation and their application in real-
world systems like search engines, e-commerce, and social
networks.

• Conversational Information Seeking: Theory and Applica-
tion [7] in SIGIR 2022. The tutorial aims to provide an intro-
duction to Conversational Information Seeking (CIS), cover-
ing recent advanced topics and state-of-the-art approaches.

• Self-Supervised Learning for Recommendation [11] in CIKM
2022. This tutorial aims to present a systematic review of
state-of-the-art self-supervised learning (SSL)-based recom-
mender systems.

• Limited Data Learning [42] in ACL 2022. This tutorial offers
an overview of methods alleviating the need for labeled data
in NLP, including DA and semi-supervised learning.

• Proactive Conversational Agents [19] in WSDM 2023. This
tutorial introduces methods to equip conversational agents
with the ability to interact with end users proactively.

Unlike previous tutorials that focus on either conversational
systems or the data scarcity problem, this tutorial provides an in-
depth exploration of the challenges associated with augmenting and
creating conversational data, highlighting the unique difficulties
posed in conversational context. For the first time, we presented
this tutorial at the CIKM 2023 conference held in Birmingham, UK.
Approximately 25 individuals from various communities partici-
pated in our tutorial. The audience was researchers interested in
the field of conversational systems as well as specific fields such as
medicine, law, and education. Additionally, the subject captured the
attention of researchers and practitioners in the industry seeking
to develop dialogue systems tailored to specific domains.

Target audience and prerequisites. This tutorial is designed
for professionals, students, and researchers in information retrieval
and natural language processing, specifically interested in conver-
sational AI. Familiarity with machine learning, deep learning, and
transformers is required. No prior knowledge of dialogue system
models or data augmentation methods is necessary.

Tutorial material. Tutorial slides, video teaser, a collection of
essential references, and other support materials can be found at
the tutorial website https://dataug-convai.github.io.

2 TUTORIAL OUTLINE
We plan to give a half-day lecture-style tutorial. The tutorial starts
by an introduction, followed by three main sessions. We plan to
have a short Q&A after each session and conclude the tutorial with
a discussion on future direction and a final Q&A session.

2.1 Agenda
A tentative schedule of the tutorial is as follows.

(1) Introduction (20 min)
(a) Conversational Systems
(b) Problem of Data Scarcity

(c) Data Augmentation Approach
(2) Evaluation (20 min)
(a) Automatic Methods
(b) Human-based Methods

(3) Conversation Generation: Task-oriented (50 min)
(a) PreLLM:

(i) Agenda-/Rule-/Schema-based
(ii) Data-driven Generation
(iii) Data-driven User Simulator

(b) PostLLM:
(i) With Fine-tuning
(ii) With Prompting
(iii) With Zero-shot

(4) Conversation Generation: Open Domain (65 min)
(a) PreLLM:

(i) Document-grounded
(ii) Self-play Simulation

(b) PostLLM:
(i) With Fine-tuning
(ii) With Prompting

(5) Conclusion and Future Direction (10 min)
(6) Q&A (15 min)

2.2 Content
Introduction. We start by introducing the audience to the ba-

sics of conversational systems, including TOD and ODD systems.
We provide an overview of the components and concepts associ-
ated with TOD and ODD systems, ensuring that participants can
grasp the necessary knowledge to follow the tutorial independently.
We further discuss the data scarcity problem in creating dialogue
systems, particularly in low-resource domains and languages and
give an introduction to the proposed techniques to tackle this issue.
Given that dialogue datasets may not be available for all languages
and domains, we discuss dialogue data generation methods that
leverage external resources such as unstructured text files, Knowl-
edge Graphs (KG), and Large Language Models (LLMs).

Evaluation. Before delving into methods for creating dialogue
data, it’s essential to address how to evaluate the quality of this
data. Synthetic conversation samples are primarily evaluated using
two methods: intrinsic and extrinsic evaluation. The intrinsic eval-
uation approach directly assesses the quality of generated dialogue
samples and comprises two categories: Automatic and Human eval-
uation. Conversely, in the extrinsic evaluation approach, the data
augmentation method is evaluated on downstream tasks; i.e., when
the synthetically generated dialogue data is used for training a
dialogue model.

In this tutorial, our focus is mainly on the intrinsic approach.
Under the automatic approach, we discuss both reference-based
and reference-free methods. For reference-based methods, we ex-
plain techniques such as word overlap metrics, BERTScore [46],
Coverage [40], and Coreference alignment [10]. Additionally, we
explore simulation-based methods [34] and measures like Dist-n,
Ent-n, Sent-BERT [31], and USR [24] for reference-free evaluation.
For human evaluation, we discuss diverse methods such as Single-
model per-turn, Single-model per-dialogue, Pairwise per-turn, and
Pairwise per-dialogue methods [33]. We provide a comprehensive
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discussion of the advantages and disadvantages of these evaluation
methods, taking into account their suitability for different scenarios.

Conversation Generation: Task-oriented We next discuss
the conversation generation methods for TOD systems. In such sys-
tems, the primary objective of the dialogue system is to understand
the user’s intent throughout a multi-turn conversation and subse-
quently provide relevant suggestions to assist the user in achieving
their goal. However, accurately capturing the essential information
from the user’s utterances to ensure successful task completion
requires meticulous attention and domain expertise [26].

At first, we give an overview of the problem by describing clear
examples of TOD data, explaining its challenges, and showing com-
monly used datasets. Afterwards, we present current research by
observing it from the perspective of leveraging LLMs. We begin by
introducing methods that fit into the preLLM section. The first ap-
proach discussed embodies rule-guided generationmethods [30, 32],
which use slot-value schemes to automatically generate dialogues
and annotations. A second approach focuses on data-driven gener-
ation [15, 44], where goal templates are filled in with values from
a knowledge base that is further used in a pre-trained language
models for dialogue generation. Another method revolves around
user simulator [20, 37], where the dialogue is created by accessing
two agents that each processes the dialogue history and generates
a belief state for one side of the conversation. In the second part
of TOD generation, we will focus on methods that leverage LLMs
w.r.t. their generalization capabilities. Ordering them by needs of
computational resources, we present dialogue generation using fine-
tuning [25], prompting [18, 36], and zero-shot generalization [23].

Conversation Generation: Open Domain In this part, our
focus is on the methods available for generating dialogue samples
for an ODD system. We categorize current works into preLLM
and postLLM methods. Under preLLM, we start by examining
the document-grounded approach [4, 12, 13, 21, 40], which fol-
lows a pipeline method originating from synthetic QA pair genera-
tion [2, 17, 28]. This approach comprises four sequential stages: pas-
sage selection, span extraction, user & agent utterance generation,
followed by a filtering process to maintain the quality of generated
turns. Next, we explore self-play simulation methods involving a
trained dialogue agent acting as both the user and the agent bot,
generating conversation samples through interactions between two
agents. Target-guided dialogue systems [8, 29, 34, 35, 39, 43, 47]
are often leveraged for self-play simulation. Therefore, we delve
into target-guided dialogue systems, focusing on concepts such
as dialogue flow and dialogue planning strategies. These concepts
enhance controllability in the generation process.

In the postLLM part, we explore methods that utilize either
fine-tuning or prompting to generate conversation data. In the
case of fine-tuning, we introduce the inpainting method [6], which
defines the task as taking a partial dialog and generating a complete
dialog. Additionally, for the prompting approach, we discuss various
methods hinging on the three stages of (i) seed data generation, (ii)
conversation generation, and (iii)filtering. Building on this pipeline,
we elaborate current research in different domains, such as social
dialogue [5, 14, 41], role-specified open-domain dialogue [3], math
tutoring dialogue [22], persona-based dialogue [16], target-guided
dialogue [38], and non-collaborative dialogue [1].

Conclusion and Future DirectionWe conclude the tutorial
with an exploration of open research problems and future directions
in the field.
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