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Part 1: Evaluation
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Synthetic Conversation Evaluation

/
Extrinsic Evaluation
Train the dialogue model with synthetically generated data and evaluate the performance on

downstream tasks

AN

-
/
Intrinsic Evaluation

Evaluate directly the quality of generated dialogue

-  Human evaluation

- Automatic evaluation

\




Word overlap, BERTScore, BARTScore,

/ Reference-based | — Coverage, Coreference alignment, Exact match

Automatic
\ Ref ; | Dist-n, Ent-n, Sent-BERT, USR,
e - elerence-ree Self-BLEU, GEval, UniEval, Simulation
Evaluation
Single-model per-turn, Single-model per-dialogue, Pairwise per-turn,
Human —1

Pairwise per-dialogue

A [ The list is non-exhaustive and each paper uses some of these metrics.

DISCLAIMER




Word overlap, BERTScore, BARTScore,

/ Reference-based — Coverage, Coreference alignment, Exact match

Automatic \

Conversation
Evaluation



Automatic Reference-based Evaluation

/
e Word overlap metrics:
o E.g., BLEU (1-3), ROUGE-L (R-L), METEOR, etc.
e Embedding-based metrics:
o E.g., BERTScore and BARTScore
o  Similarity between the generated and reference text using contextual embeddings
e Subtask evaluation metrics:

O

E.g., Coverage, Coreference alignment, Exact match



https://dblp.org/db/conf/iclr/iclr2020.html#ZhangKWWA20
https://dblp.org/pid/207/1964.html
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BERTScore
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BERTScore - Optional IDF Weighting
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BERTScore

e Strong segment-level correlation with human
e Ineffective at dealing with conversations
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Subtask Evaluation Metrics

p
Span Coverage

e How much the extracted spans cover
the original documents

e Dialogue generation models trained
on spans with higher span coverage perform better

-

Zspan | Udedoci Used S|

Coverage =
= |document;|

S: span within document

4 N [
Span Match

e Exact Match: the predicted span exactly °

matches the reference span

e F1 of span n-grams
N NG

Correference alignment

Precision, Recall, and F1 of pronouns
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Subtask Evaluation Metrics - TOD

Turn-based evaluation:

e On intent-level: Active Intent Accuracy

e On slot-level: Requested slot F1

e Zero-shot Coverage: Measures the accuracy ratio between zero-shot learning
outcomes and a fully trained model

Conversation evaluation:

e On goal-level: Success Rate, Completion Rate, Book Rate, Inform Prec/Rec/F1
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Conversation
Evaluation

Automatic

Reference-free

Dist-n, Ent-n, Sent-BERT, USR,
Self-BLEU, GEval, UniEval, Simulation
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Automatic Reference-free Evaluation

Diversity Metrics: A
e Dist-n
o Number of distinct unigrams and bigrams / total number of generated words.
e Ent-n
o How evenly the n-gram distribution is over all generated questions
e Sent-BERT
o The average negative cosine similarity between SentenceBERT embedding for each
pair of responses
e Self-BLEU
O  Uses one sentence from a set as a hypothesis and the rest as references, calculating a BLEU score for
\_ each sentence. The average of these scores is termed Self-BLEU J

Mind length normalization in Diversity metrics!
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USR: UnSupervised and Reference-free metric for dialog

Consists of five sub-metrics, combined to measure the Overall Quality metric.

Understandable

Natural

Maintains Context
Interesting

Uses Knowledge

Response being understandable given the previous context

Response being similar to what a person would naturally
say

Response being a valid continuation of the conversation
Dull or interesting response

Response using a given fact
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USR: UnSupervised and Reference-free metric for dialog

Uses RoBERTa, fine tuned on dialogue corpus used for evaluation.

Understandable r. response Ir|
i: i-th word of response — z l;
Natural l;: mask log likelihood of word i ;

Maintains Context RoBERTa further fine tuned to predict P(y=1|x, r)

Interesting y: whether r is true response or randomly sampled

x: dialogue history and/or the fact
Uses Knowledge

Overall Quality Combines sub-metrics using a regression model trained on
human annotation
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UniEval

-

An aspect-based reference-free evaluator for NLG tasks
Casts each evaluation aspect to a Boolean QA problem:
o Coherence: "Is this a coherent summary of the document?"
e Intermediate training of TS for each task (similar to USR aspects for conversations)

Evaluation Tasks
A

r N\ 4
Language Model Coherence Relevance UniEval
: : ~

Question: Is this a Question: Is this

coherent summary summary relevant SCORE
to the document? to the reference? (1 11
Summary: ... Summary: ... 11
D : ! (] 1]

ocument: ... Reference: ...

Answer: No Answer: Yes

Unsupervised Learning on Evaluation Tasks




Automatic Simulation-based Evaluation

Used for evaluating (target-guided) open domain dialogue systems

o

e Two dialogue agents converse with each other

e Automatically measures the success rate of achieving the target

e Often a max. allowed number of turn is set

Agent role: Human role:

converse with agent without

Randomly picks a target
knowing the target

and starting point




Conversation
Evaluation

Human

Single-model per-turn, Single-model per-dialogue, Pairwise per-turn,

Pairwise per-dialogue
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Human Evaluation

-
e Evaluation criteria

o Naturalness, Informativeness, context relevance, answer accuracy, etc.
o  Overall quality

e Method of evaluation
o Single-model: Assigning integer scores (e.g., 1-3) for a question/dialogue
o Pair-wise: Comparing two responses/dialogues and select the best one
o Turn-level: Human rating after every system response
o Dialogue-level: Human rating at the end of conversation

Human evaluations are not comparable across different experiments and papers.
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Human Evaluation Methods - Comparison
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Human Evaluation Methods - Comparison

/o Per-turn evaluation: More fine-grained, can capture small differences

e Pairwise per-turn evaluation: Performs best on fine tuning comparison
o Differences in models’ replies are easily detectable

e Pairwise per-dialogue evaluation: Performs best on length comparison
o Differences appear after several conversation turns

e Single model evaluation: Performs best on model size comparison (#params)
o Slight differences in quality

~

/
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