

Data Augmentation for Conversational AI

The Web Conference 2024

Tutorial website

Presenters

Heydar Soudani PhD Candidate Radboud University heydar.soudani@ru.nl

Roxana Petcu PhD Candidate University of Amsterdam r.m.petcu@uva.nl

Evangelos Kanoulas

University of Amsterdam e.kanoulas@uva.nl

Faegheh Hasibi

Assistant Professor Radboud University

f.hasibi@cs.ru.nl

Part 1: Evaluation

Duration: 20 min Presenter: Faegheh Hasibi

Synthetic Conversation Evaluation

Extrinsic Evaluation

Train the dialogue model with synthetically generated data and evaluate the performance on

downstream tasks

Intrinsic Evaluation

Evaluate directly the quality of generated dialogue

- Human evaluation
- Automatic evaluation

The list is non-exhaustive and each paper uses some of these metrics.

Automatic Reference-based Evaluation

• Word overlap metrics:

• E.g., BLEU (1-3), ROUGE-L (R-L), METEOR, etc.

• Embedding-based metrics:

- E.g., BERTScore and BARTScore (Zhang et al., 2020, (Yuan, et al., 2021)
- Similarity between the generated and reference text using contextual embeddings

Subtask evaluation metrics:

• E.g., Coverage, Coreference alignment, Exact match

(Wu et al., 2022, Kim et al., 2021, Gao et al., 2019)

BERTScore

Candidate

Image: (Zhang et al., 2020)

BERTScore

BERTScore - Optional IDF Weighting

BERTScore

- Strong segment-level correlation with human
- Ineffective at dealing with conversations

Candidate

Subtask Evaluation Metrics

Span Coverage

- How much the extracted spans cover the original documents
- Dialogue generation models trained on spans with higher span coverage perform better

$$Coverage = \frac{\sum_{span} |\bigcup_{d \in doc_i} \bigcup_{s \in d} s|}{|document_i|}$$
S: span within document

(Wu et al., 2022)

Span Match

- Exact Match: the predicted span exactly matches the reference span
- F1 of span n-grams (Kim et al., 2022)

Correference alignment

• Precision, Recall, and F1 of pronouns

(Gao et al., 2019)

Subtask Evaluation Metrics - TOD

Turn-based evaluation:

- On intent-level: Active Intent Accuracy
- On slot-level: Requested slot F1
- Zero-shot Coverage: Measures the accuracy ratio between zero-shot learning outcomes and a fully trained model (Kim et al., 2021)

Conversation evaluation:

On goal-level: Success Rate, Completion Rate, Book Rate, Inform Prec/Rec/F1

Automatic Reference-free Evaluation

Diversity Metrics:

- Dist-n (Li et al., 2016)
 - Number of distinct unigrams and bigrams / total number of generated words.
- Ent-n (Zhang et al., 2018)
 - How evenly the n-gram distribution is over all generated questions
- Sent-BERT (Reimers et al., 2019)
 - The average negative cosine similarity between SentenceBERT embedding for each pair of responses
- Self-BLEU (Zhu et al., 2018)
 - Uses one sentence from a set as a hypothesis and the rest as references, calculating a BLEU score for each sentence. The average of these scores is termed Self-BLEU

Mind length normalization in Diversity metrics!

USR: UnSupervised and Reference-free metric for dialog

Consists of five sub-metrics, combined to measure the **Overall Quality** metric.

Understandable	Response being understandable given the previous context
Natural	Response being similar to what a person would naturally say
Maintains Context	Response being a valid continuation of the conversation
Interesting	Dull or interesting response
Uses Knowledge	Response using a given fact

USR: UnSupervised and Reference-free metric for dialog

Uses RoBERTa, fine tuned on dialogue corpus used for evaluation.

Understandable Natural	r: response $ r $ i: i-th word of response $-\sum_{i}^{ r } l_i$ l_i : mask log likelihood of word i $-\sum_{i}^{ r } l_i$
Maintains Context	RoBERTa further fine tuned to predict $P(y=1 x, r)$
Interesting	<i>y:</i> whether r is true response or randomly sampled <i>x</i> : dialogue history and/or the fact
Uses Knowledge	
Overall Quality	Combines sub-metrics using a regression model trained on human annotation

UniEval

- An aspect-based reference-free evaluator for NLG tasks
- Casts each evaluation aspect to a Boolean QA problem:
 - Coherence: "Is this a coherent summary of the document?"
- Intermediate training of T5 for each task (similar to USR aspects for conversations)

Automatic Simulation-based Evaluation

- Used for evaluating (target-guided) open domain dialogue systems
- Two dialogue agents converse with each other
- Automatically measures the **success rate** of achieving the target
- Often a max. allowed number of turn is set

Human role: converse with agent without knowing the target

Human Evaluation

• Evaluation criteria

- Naturalness, Informativeness, context relevance, answer accuracy, etc.
- Overall quality

Method of evaluation

- **Single-model:** Assigning integer scores (e.g., 1-3) for a question/dialogue
- Pair-wise: Comparing two responses/dialogues and select the best one
- Turn-level: Human rating after every system response
- **Dialogue-level:** Human rating at the end of conversation

Human evaluations are not comparable across different experiments and papers.

Human Evaluation Methods - Comparison

Human Evaluation Methods - Comparison

- **Per-turn evaluation:** More fine-grained, can capture small differences
- **Pairwise per-turn evaluation:** Performs best on fine tuning comparison
 - Differences in models' replies are easily detectable
- Pairwise per-dialogue evaluation: Performs best on length comparison
 - Differences appear after several conversation turns
- Single model evaluation: Performs best on model size comparison (#params)
 - Slight differences in quality