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Supplementary Material
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What is This Tutorial About?

The process of artificially expanding the size and/or the 
diversity of training data for conversational AI models.
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Why “Data Creation” for Conversational AI? 

Because of the Data 
Scarcity issue
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● Large neural models are heavily used for dialogue systems 

● Access to large amount of training data is key to the success of these models

● Crowdsourcing is a common approach to create large scale datasets

Data Scarcity in Conversational AI
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● Expensive 

○ CoQA spent 3.6 USD per passage on crowdsourcing 

○ Total cost: ~ 30K for ~8400 passage and 127K QA pairs

● Time consuming, hard to scale up (Wu et. al. 2022)

● Generating data for conversational tasks is often complex (Gu et al., 2021)

○ High cognitive load for workers, low quality data

○ E.g., Preference Elicitation dialogues (Radlinski et al. 2019)

Crowdsourcing Limitations

Data Augmentation is an effective approach 
to address the data scarcity issue
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With LLMs  (as few-shot learners), why do we 
still need data augmentation?
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● Generic LLMs are not aware of sensitive/domain specific data (Deng et al., 2023a); e.g.,

○ Product information in a retail domain

○ Sensitive data specific to health/bank/security domain

● Utilizing LLMs for developing a product is not always possible

○ Time and compute budget constraints by small/medium scale enterprises

○ Although GPT* models are successful products, they remain proprietary and non-replicable

● LLMs themselves are used for data augmentation 
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LLMs are Moving the Field Forward …

The chatbot is … Initiate the conversation and react 
friendly to the user’s utterances. Talk about everyday 
topics for 10-15 turns and end the call.
###
Al: Hello. Did you sleep well last night?
User: Yes, I slept well. Thank you.
Al: That's good. I'm glad you slept well. Make sure not 
to skip any meal. 
User: Okay. you eat well, too.
Al: Alright. I'll call you again later.
User: Bye.
###

Al: Hi, how’s your health these days?
User: It’s very good.
Al: That’s good to hear. Do you work out often? 
User: No, I don't have time to.
Al: I see. It would be nice if you could work out 
at least once a week. 
User: That's true. But why do you ask?
Al: It’s just that this product has been newly 
released. I thought it would be helpful to you.

Input prompt Generated example

(Bae et al., 2022) 10



Introduction to Conversational  AI
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Conversational AI

(Deng et al., 2023)

Systems that are designed to simulate human-like conversations and 
are used for various purposes. (Zamani et al., 2023)
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Types of Conversational Systems

- Focuses on task completion

- Solves specific problems in a 
certain domain; e.g.,  restaurant 
reservation, movie ticket 
booking, etc.

- Developed using pipeline or 
end-2-end approaches

- Aims to chat with users 
without the task and domain 
restrictions

- Engage in conversations with 
users across a wide range of 
topics and domains

- Usually fully data-driven

(Zamani et al., 2023), (Ni et al., 2023)

Task Oriented Open Domain

- Designed to assist users in 
seeking and retrieving 
information through natural 
language dialogue interactions.

- Three main areas: 
conversational search, 
conversational (QA), and 
conversational recommendation

Conv. Information Seeking
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● Generates responses to reach user’s objectives

● Applications in various tasks such as booking a flight, restaurant reservation, hotel 

recommendation, chatbots (Fellows et al., 2021, Wen et al., 2016)

● Challenges (Kwan et al., 2023):

○ Integrating domain- and task-dependent knowledge

○ Integrating this knowledge with natural language

○ Limited data

Task-oriented Dialogue Systems

14



Task-oriented Dialogue Systems
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● Cross domain transfer (Lee et al., 2018)

○ Task-specific structural constraints make it difficult to expand to new domains

● Diversity and coverage (Budzianowski et al., 2018)

○ Users interact in a multitude of ways towards the same goal

● Accuracy (Wan et al., 2022, Yoo et al., 2020 , Terragni et al., 2023)

○ Systems need to correctly understand the state of the dialogue

Challenges of Task Oriented Dialogue Systems
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Example of TOD
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Open Domain Dialogue Systems 

Generative Systems Retrieval Systems

Ensemble Systems

Use sequence-to-sequence models to 
generate responses that may not be in 
the training corpus

Retrieval natural and relevant 
pre-existing responses from a corpus

Combine generative and retrieval methods to:
● Refine retrieved responses using generative 

methods or
● Compare retrieved and generated responses 

and select the best ones
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● Coherence
○ Responses are context-aware (e.g., based on conversation history)

● Engagement

○ Avoid making dull responses 

● Informativeness
○ Responses are based on documents, pre-defined FAQs, and/or knowledge graphs

● Proactivity
○ Drive the discussion topic forward (target-guided and policy planning)

Challenges of Open Domain Dialogue Systems

(Chen et al., 2023, Deng et al., 2023)
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Example ODD 

Crowdsourcing sample for Persona-chat 
dataset (Zhang et al., 2018)

Generated dialogue form PersonaChatGen 
(Lee et al., 2022)
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● The primary objective of a CIS system is to satisfy the information needs of users

● Main areas:

Conversational Information Seeking

(Zamani et al., 2023), (Wang et al., 2023)

Conversational search & Conversational Question Answering (QA)
find specific information, allowing users to pose multiple questions

Conversational Recommendation Systems
suggest items to users based on their previous interactions, serving as personalized 
information-seeking tools
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● Control the generation process

○ Topic shifting

● Multi-evidence answer generation

○

● Proactivity 

○ Mixed-initiative: Asking clarification questions

Challenges of Conversational Information Seeking 
Systems

(Wu et al., 2022), (Deng et al., 2023)
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Dialogue turn Dialogue act Grounded Passage

U1: Hello, I forgot to update my address, can 
you help me with that?

Query s_id: 1, text: 1. Forgetting to Update Address (A title of 
section)

A2: hi, you have to report any change of 
address to DMV within 10 days after moving. 
You should …

Response s_id: 4, text: By statute , you must report a change of address 
to DMV within ten days of moving. That is the case for the 
address associated with your license …

U3: Can I do my DMV transactions online? Query s_id: 56, text: 5. Not Bringing Proper Documentation to DMV 
Office (A title of section)

A4: Yes, you can sign up for MyDMV for all the 
online transactions needed.

Response s_id: 56, text: Sign up or log into MyDMV

…

U9: Can you tell me more about Traffic points 
and their cost?

Query s_id: 40, text: 4. Understanding how Much Traffic Points Cost 
(A title of section)

A10: Traffic points is the system used by DMV 
to track dangerous drivers. The cost …

Response s_id: 41, text: DMV maintains a point system to track 
dangerous drivers. Often , motorists convicted …

Example CIS
(Feng, et al., 2020)
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Tutorial Agenda

Conversational Data 
Creation

Evaluation Task-oriented Open Domain
Conversational 

Information 
Seeking

(20 min) (45 min) (30 min) (45 min)
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